This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091510 #23 Jul 19 2023 00:13:47 %S A091510 1,1,136,1270933717887,14178431955039102651224805804387336192, %T A091510 19591572513704791799478942287037427963655716808579364910828644498251439742675781250000 %N A091510 Number of nonisomorphic algebras with a ternary operation (3-d groupoids) with n elements. %H A091510 Philip Turecek, <a href="/A091510/b091510.txt">Table of n, a(n) for n = 0..10</a> %F A091510 a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j, k>=1} ( (Sum_{d|lcm(i, j, k)} (d*s_d))^(s_i*s_j*s_k*lcm(i, j, k)/(i*j*k))). %F A091510 a(n) is asymptotic to n^(n^3)/n!. %o A091510 (Sage) %o A091510 Pol.<x> = InfinitePolynomialRing(QQ) %o A091510 @cached_function %o A091510 def Z(n): %o A091510 if n==0: return Pol.one() %o A091510 return sum(x[k]*Z(n-k) for k in (1..n))/n %o A091510 def a(n,k=3): %o A091510 P = Z(n) %o A091510 q = 0 %o A091510 coeffs = P.coefficients() %o A091510 for mon in enumerate(P.monomials()): %o A091510 m = Pol(mon[1]) %o A091510 p = 1 %o A091510 V = m.variables() %o A091510 T = cartesian_product(k*[V]) %o A091510 Tsorted = [tuple(sorted(u)) for u in T] %o A091510 Tset = set(Tsorted) %o A091510 for t in Tset: %o A091510 r = [Pol.varname_key(str(u))[1] for u in t] %o A091510 j = [m.degree(u) for u in t] %o A091510 D = 0 %o A091510 lcm_r = lcm(r) %o A091510 for d in divisors(lcm_r): %o A091510 try: D += d*m.degrees()[-d-1] %o A091510 except: break %o A091510 p *= D^(Tsorted.count(t)*prod(r)/lcm_r*prod(j)) %o A091510 q += coeffs[mon[0]]*p %o A091510 return q %o A091510 # _Philip Turecek_, Jun 12 2023 %Y A091510 Cf. A001329, A001331, A091511. %K A091510 nonn %O A091510 0,3 %A A091510 _Christian G. Bower_, Jan 16 2004