cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001331 Number of n-element algebras with 1 ternary operation.

Original entry on oeis.org

1, 130, 1270932917454, 14178431955039102644307345678938144832, 19591572513704791799478942287037427963644425946432640042160816616766795992851260047500, 1672390093955882094725125078968449171301017629802018367164057251590306327375884442617701277598562886114475651122751129803783336384871488080121922759032559677888042592
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A091510.

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 06 2004

A091511 Number of n X n X n 3-D matrices over symbol set {1,...,n} equivalent under any permutation of rows, columns, stacks or the symbol set.

Original entry on oeis.org

1, 1, 30, 5887172299, 1025638889935309161425800069552344, 11337715575060644543768059040620852798601554512475786008052416860406653219312996
Offset: 0

Views

Author

Christian G. Bower, Jan 16 2004

Keywords

Crossrefs

Programs

  • Sage
    Pol. = InfinitePolynomialRing(QQ)
    @cached_function
    def Z(n):
        if n == 0: return Pol.one()
        return sum(x[k]*Z(n-k) for k in (1..n))/n
    @cached_function
    def monprod(M):
        p = Pol.one()
        V = [m.variables() for m in M]
        T = cartesian_product(V)
        for t in T:
            r = [Pol.varname_key(str(u))[1] for u in t]
            j = [Pol(M[u[0]]).degree(u[1]) for u in enumerate(t)]
            lcm_r = lcm(r)
            p *= x[lcm_r]^(prod(r)/lcm_r*prod(j))
        return p
    @cached_function
    def pol_isotop(n,k):
        P = Z(n)
        p = Pol.zero()
        coeffs = P.coefficients()
        mons = P.monomials()
        C = cartesian_product(k*[mons])
        Csorted = [tuple(sorted(u)) for u in C]
        Cset = set(Csorted)
        for c in Cset:
            p += Csorted.count(c)*prod([coeffs[mons.index(u)] for u in c])*monprod(c)
        return p
    @cached_function
    def rule_sub(r,m):
        D = 0
        for d in divisors(r):
            try: D += d*m.degrees()[-d-1]
            except: break
        return D
    def a(n,k=3):
        P = Z(n)
        coeffs = P.coefficients()
        Q = pol_isotop(n,k)
        inds = [Pol.varname_key(str(u))[1] for u in Q.variables()]
        p = 0
        for mon in enumerate(P.monomials()):
            m = Pol(mon[1])
            p += coeffs[mon[0]]*Q.subs({x[i]:rule_sub(i,m) for i in inds})
        return p
    # Philip Turecek, Jun 17 2023

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n, 1*u_1+2*u_2+...=n, 1*v_1+2*v_2+...=n} (fixA[s_1, s_2, ...;t_1, t_2, ...;u_1, u_2, ...;v_1, v_2, ...]/ (1^s_1*s_1!*2^s_2*s_2!*... *1^t_1*t_1!*2^t_2*t_2!*... *1^u_1*u_1!*2^u_2*u_2!*... *1^v_1*v_1!*2^v_2*v_2!*...)) where fixA[...] = Product_{i, j, k>=1} ( (Sum_{d|lcm(i, j, k)} (d*v_d))^(s_i*t_j*u_k *lcm(i, j, k)/(i*j*k))).
a(n) asymptotic to n^(n^3)/(n!^4).

Extensions

a(2) corrected by Philip Turecek, Jun 13 2023
Showing 1-2 of 2 results.