This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091512 #50 Jan 02 2024 21:49:29 %S A091512 1,4,3,12,5,12,7,32,9,20,11,36,13,28,15,80,17,36,19,60,21,44,23,96,25, %T A091512 52,27,84,29,60,31,192,33,68,35,108,37,76,39,160,41,84,43,132,45,92, %U A091512 47,240,49,100,51,156,53,108,55,224,57,116,59,180,61,124,63 %N A091512 a(n) is the largest integer m such that 2^m divides (2*n)^n, i.e., the exponent of 2 in (2*n)^n. %C A091512 n times one more than the trailing 0's in the binary representation of n. - _Ralf Stephan_, Aug 22 2013 %H A091512 Vincenzo Librandi, <a href="/A091512/b091512.txt">Table of n, a(n) for n = 1..10000</a> %H A091512 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>. %F A091512 a(n) = A007814(A000312(n)) = n*A001511(n) = A069895(n)/2. %F A091512 G.f.: Sum_{k>=0} 2^k*x^2^k/(1-x^2^k)^2. %F A091512 Recurrence: a(0) = 0, a(2*n) = 2*a(n) + 2*n, a(2*n+1) = 2*n+1. %F A091512 Dirichlet g.f.: zeta(s-1)*2^s/(2^s-2). - _Ralf Stephan_, Jun 17 2007 %F A091512 Mobius transform of A162728, where x/(1-x)^2 = Sum_{n>=1} A162728(n)*x^n/(1+x^n). - _Paul D. Hanna_, Jul 12 2009 %F A091512 a(n) = A162728(2*n)/phi(2*n), where x/(1-x)^2 = Sum_{n>=1} A162728(n)*x^n/(1+x^n). - _Paul D. Hanna_, Jul 12 2009 %F A091512 a((2*n-1)*2^p) = (2*n-1)*(p+1)*2^p, p >= 0. Observe that a(2^p) = A001787(p+1). - _Johannes W. Meijer_, Feb 08 2013 %F A091512 Sum_{k=1..n} a(k) ~ n^2. - _Amiram Eldar_, Oct 22 2022 %F A091512 a(n) = Sum_{d divides n} d*A048298(n/d); that is, a(n) is the Dirichlet product of A048298(n) and A000027(n). - _Peter Bala_, Jan 02 2024 %p A091512 nmax:=63: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (2*n-1)*(p+1)*2^p od: od: seq(a(n), n=1..nmax); # _Johannes W. Meijer_, Feb 08 2013 %p A091512 # second Maple program: %p A091512 a:= n-> n*padic[ordp](2*n, 2): %p A091512 seq(a(n), n=1..63); # _Alois P. Heinz_, Jan 02 2024 %t A091512 Table[ Part[ Flatten[ FactorInteger[(2 n)^n]], 2], {n, 1, 124}] %t A091512 Table[IntegerExponent[(2n)^n,2],{n,70}] (* _Harvey P. Dale_, Sep 11 2015 *) %o A091512 (PARI) a(n)=n*(valuation(n,2)+1) %o A091512 (PARI) a(n)=if(n<1,0,if(n%2==0,2*a(n/2)+n,n)) %o A091512 (Magma) [n*(Valuation(n, 2)+1): n in [1..80]]; // _Vincenzo Librandi_, May 16 2013 %o A091512 (Python) %o A091512 def A091512(n): return n*(n&-n).bit_length() # _Chai Wah Wu_, Jul 11 2022 %Y A091512 Cf. A091519, A090740, A090739, A048298, A162728, A220466. %K A091512 nonn,mult,easy %O A091512 1,2 %A A091512 _Ralf Stephan_ and _Labos Elemer_, Jan 18 2004