This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091514 #38 Feb 16 2025 08:32:52 %S A091514 2,7,23,79,1087,66047,263167,16785407,1073807359,17180131327, %T A091514 68720001023,4398050705407,70368760954879,18014398777917439, %U A091514 18446744082299486207,5070602400912922109586440191999 %N A091514 Primes of the form (2^n + 1)^2 - 2 = 4^n + 2^(n+1) - 1. %C A091514 Cletus Emmanuel calls these "Kynea primes". %H A091514 Vincenzo Librandi, <a href="/A091514/b091514.txt">Table of n, a(n) for n = 1..30</a> %H A091514 Ernest G. Hibbs, <a href="https://www.proquest.com/openview/4012f0286b785cd732c78eb0fc6fce80">Component Interactions of the Prime Numbers</a>, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33. %H A091514 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Near-SquarePrime.html">Near-Square Prime</a> %F A091514 a(n) = (2^A091513(n) + 1)^2 - 2. %p A091514 select(isprime,[seq((2^n+1)^2-2, n=0..1000)]); # _Robert Israel_, Feb 10 2016 %t A091514 lst={};Do[If[PrimeQ[p=4^n+2^(n+1)-1], (*Print[p];*)AppendTo[lst, p]], {n, 10^2}];lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 21 2008 *) %t A091514 Select[Table[(2^n + 1)^2 - 2, {n, 0, 50}], PrimeQ] (* _Eric W. Weisstein_, Feb 10 2016 *) %o A091514 (Magma) [a: n in [0..60] | IsPrime(a) where a is 4^n+2^(n+1)-1]; // _Vincenzo Librandi_, Dec 13 2011 %o A091514 (PARI) select(isprime, vector(100,n,(2^n+1)^2-2)) \\ _Charles R Greathouse IV_, Feb 19 2016 %Y A091514 Cf. A093069 (numbers of the form (2^n + 1)^2 - 2). %Y A091514 Cf. A091513 (indices n such that (2^n + 1)^2 - 2 is prime). %K A091514 nonn %O A091514 1,1 %A A091514 _Eric W. Weisstein_, Jan 17 2004 %E A091514 Edited by _Ray Chandler_, Nov 15 2004 %E A091514 First term (2) added by _Vincenzo Librandi_, Dec 13 2011