cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091518 Decimal expansion of the hyperbolic volume of the figure eight knot complement.

This page as a plain text file.
%I A091518 #35 Feb 16 2025 08:32:52
%S A091518 2,0,2,9,8,8,3,2,1,2,8,1,9,3,0,7,2,5,0,0,4,2,4,0,5,1,0,8,5,4,9,0,4,0,
%T A091518 5,7,1,8,8,3,3,7,8,6,1,5,0,6,0,5,9,9,5,8,4,0,3,4,9,7,8,2,1,3,5,5,3,1,
%U A091518 9,4,9,5,2,5,1,6,4,8,8,0,4,4,2,7,2,9,4,0,7,0,8,4,5,6,5,1,3,3,8,9,8,9
%N A091518 Decimal expansion of the hyperbolic volume of the figure eight knot complement.
%D A091518 David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke and Victor H. Moll, Experimental Mathematics in Action, Wellesley, MA: A K Peters, 2007, p. 38.
%H A091518 David H. Bailey and Jonathan M. Borwein, <a href="http://www.ams.org/notices/200505/fea-borwein.pdf">Experimental Mathematics: Examples, Methods and Implications</a>, Notices of the AMS, Vol. 52, No. 5 (2005), pp. 502-514. See p. 504.
%H A091518 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 638.
%H A091518 John Milnor, <a href="http://dx.doi.org/10.1090/bull/1507">Topology through the centuries: Low dimensional manifolds</a>, Bull. Amer. Math. Soc., Vol. 52, No. 4 (2015), pp. 545-584; see p. 562.
%H A091518 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FigureEightKnot.html">Figure Eight Knot</a>.
%F A091518 Equals -6 * Integral_{x=0..Pi/3} log|2*sin(x)| dx. - _Jonathan Sondow_, Oct 15 2015
%F A091518 From _Amiram Eldar_, Jul 07 2021: (Start)
%F A091518 Equals 2*sqrt(3) * Sum_{n>=1} ((1/(n*binomial(2*n,n))) * (Sum_{k=n..(2*n-1)} 1/k)).
%F A091518 Equals 2*Sum_{k>=0} binomial(2*k,k)/(16^k*(2*k+1)^2).
%F A091518 Equals 2*Sum_{k>=1} sin(k*Pi/3)/k^2. (End)
%F A091518 Equals polygamma(1, 1/3)/sqrt(3) - 2*Pi^2/3^(3/2). - _Vaclav Kotesovec_, Jul 07 2021
%e A091518 2.02988321281930725004240510854904057188337861506059958403497821355319...
%t A091518 RealDigits[N[2*Pi/3 - 1/18*HypergeometricPFQ[{3/2, 3/2, 3/2}, {5/2, 5/2}, 1/4], 102]][[1]] (* _Jean-François Alcover_, Nov 12 2012, after _Eric W. Weisstein_ *)
%t A091518 N[(PolyGamma[1, 1/3] - PolyGamma[1, 2/3]) / (2*Sqrt[3]), 105] (* _Vaclav Kotesovec_, Jun 17 2021 *)
%o A091518 (PARI) 2*suminf(k=0,binomial(2*k,k)/16^k/(2*k+1)^2) \\ _Charles R Greathouse IV_, Oct 15 2014
%K A091518 nonn,cons
%O A091518 1,1
%A A091518 _Eric W. Weisstein_, Jan 17 2004