cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091519 G.f.: Sum_{k>=0} (2^k*t*(1+t)/(1-t)^3, t=x^2^k).

Original entry on oeis.org

1, 6, 9, 28, 25, 54, 49, 120, 81, 150, 121, 252, 169, 294, 225, 496, 289, 486, 361, 700, 441, 726, 529, 1080, 625, 1014, 729, 1372, 841, 1350, 961, 2016, 1089, 1734, 1225, 2268, 1369, 2166, 1521, 3000, 1681, 2646, 1849, 3388, 2025, 3174, 2209, 4464, 2401, 3750
Offset: 1

Views

Author

Ralf Stephan, Jan 18 2004

Keywords

Crossrefs

Programs

  • Maple
    nmax:=47: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 2^p*(2^(p+1) - 1)*(2*n-1)^2 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jan 28 2013
  • Mathematica
    a[n_] := n^2*(2 - 1/2^IntegerExponent[n, 2]); Array[a, 50] (* Amiram Eldar, Nov 29 2022 *)
  • PARI
    a(n)=2*n*n-n*n/2^valuation(n,2)
    
  • PARI
    a(n)=if(n<1,0,if(n%2==0,2*a(n/2)+n^2,n^2))

Formula

a(n) = 2*n^2 - n*A000265(n) = n*A000265(n)*A038712(n).
Recurrence: a(0) = 0, a(2*n) = 2*a(n) + (2*n)^2, a(2*n+1) = (2*n+1)^2.
a((2*n-1)*2^p) = 2^p*(2^(p+1) - 1)*(2*n-1)^2, p >= 0. - Johannes W. Meijer, Jan 28 2013
Sum_{k=1..n} a(k) ~ (4/9) * n^3. - Amiram Eldar, Nov 29 2022
From Amiram Eldar, Jan 05 2023: (Start)
Multiplicative with a(2^e) = 2^e*(2^(e+1)-1), and a(p^e) = p^(2*e) for p >= 3.
Dirichlet g.f.: zeta(s-2)*2^s/(2^s-2).
Sum_{n>=1} 1/a(n) = (c-1)*Pi^2/4, where c = A065442 is Erdős-Borwein constant. (End)