This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091533 #38 Apr 26 2025 07:57:15 %S A091533 1,1,1,2,3,2,3,7,7,3,5,15,21,15,5,8,30,53,53,30,8,13,58,124,157,124, %T A091533 58,13,21,109,273,417,417,273,109,21,34,201,577,1029,1239,1029,577, %U A091533 201,34,55,365,1181,2405,3375,3375,2405,1181,365,55,89,655,2358,5393,8625,10047,8625,5393,2358,655,89 %N A091533 Triangle read by rows, related to Pascal's triangle, starting with rows 1; 1,1. %C A091533 T(n,k) is the number of lattice paths from (0,0) to (k,n-k) using steps (1,0),(2,0),(0,1),(0,2),(1,1). - _Seiichi Manyama_, Apr 26 2025. %H A091533 Seiichi Manyama, <a href="/A091533/b091533.txt">Rows n = 0..139, flattened</a> %F A091533 T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k) + T(n-2, k-1) + T(n-2, k-2) for n >= 2, k >= 0, with initial conditions specified by first two rows. %F A091533 G.f.: A(x, y) = 1/(1-x-x*y-x^2-x^2*y-x^2*y^2). %F A091533 Sum_{k = 0..n} T(n,k)*x^k = A000045(n+1), A015518(n+1), A015524(n+1), A200069(n+1) for x = 0, 1, 2, 3 respectively. - _Philippe Deléham_, Oct 30 2013 %F A091533 Sum_{k = 0..floor(n/2)} T(n-k,k) = (-1)^n*A079926(n). - _Philippe Deléham_, Oct 30 2013 %e A091533 This triangle begins: %e A091533 1; %e A091533 1, 1; %e A091533 2, 3, 2; %e A091533 3, 7, 7, 3; %e A091533 5, 15, 21, 15, 5; %e A091533 8, 30, 53, 53, 30, 8; %e A091533 13, 58, 124, 157, 124, 58, 13; %e A091533 21, 109, 273, 417, 417, 273, 109, 21; %e A091533 34, 201, 577, 1029, 1239, 1029, 577, 201, 34; %e A091533 55, 365, 1181, 2405, 3375, 3375, 2405, 1181, 365, 55; %e A091533 89, 655, 2358, 5393, 8625, 10047, 8625, 5393, 2358, 655, 89; %e A091533 ... %p A091533 T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, %p A091533 `if`(n<1, 1, add(add(T(n-i, k-j), j=0..i), i=1..2))) %p A091533 end: %p A091533 seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Jan 14 2022 %t A091533 A091533[-2, n2_] = 0; A091533[n1_, -2] = 0; A091533[-1, n2_] = 0; A091533[n1_, -1] = 0; A091533[0, 0] = 1; A091533[n1_, n2_] := A091533[n1, n2] = A091533[n1 - 1, n2] + A091533[n1, n2 - 1] + A091533[n1 - 1, n2 - 1] + A091533[n1 - 2, n2] + A091533[n1, n2 - 2]; Table[A091533[x - y, y], {x, 0, 9}, {y, 0, x}] // Flatten (* _Robert P. P. McKone_, Jan 14 2022 *) %Y A091533 Row sums: A015518(n+1). Columns 0-1: A000045(n+1), A023610(n-1). %Y A091533 Cf. A090174, A212338 (column 2), A192364 (central terms). %Y A091533 Cf. A036355. %K A091533 nonn,easy,tabl %O A091533 0,4 %A A091533 _Christian G. Bower_, Jan 19 2004