A091538 Triangle built from m-primes as columns.
1, 0, 2, 0, 3, 4, 0, 5, 6, 8, 0, 7, 9, 12, 16, 0, 11, 10, 18, 24, 32, 0, 13, 14, 20, 36, 48, 64, 0, 17, 15, 27, 40, 72, 96, 128, 0, 19, 21, 28, 54, 80, 144, 192, 256, 0, 23, 22, 30, 56, 108, 160, 288, 384, 512, 0, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024
Offset: 0
Examples
From _Michael De Vlieger_, May 24 2017: (Start) Chart a(n,m) read by antidiagonals: n | m -> ------------------------------------------------ 0 | 1 0 0 0 0 0 0 ... (A000007) 1 | 2 3 5 7 11 13 17 (A000040) 2 | 4 6 9 10 14 15 21 (A001358) 3 | 8 12 18 20 27 28 30 (A014612) 4 | 16 24 36 40 54 56 60 (A014613) 5 | 32 48 72 80 108 112 120 (A014614) 6 | 64 96 144 160 216 224 240 (A046306) 7 | 128 192 288 320 432 448 480 (A046308) 8 | 256 384 576 640 864 896 960 (A046310) ... Triangle begins: 0 | 1 1 | 0 2 2 | 0 3 4 3 | 0 5 6 8 4 | 0 7 9 12 16 5 | 0 11 10 18 24 32 6 | 0 13 14 20 36 48 64 7 | 0 17 15 27 40 72 96 128 8 | 0 19 21 28 54 80 144 192 256 ... (End)
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Wolfdieter Lang, First 11 rows.
Crossrefs
Programs
-
Mathematica
With[{nn = 11}, Function[s, Function[t, Table[Function[m, If[m == 1, Boole[k == 1], t[[m, k]]]][n - k + 1], {n, nn}, {k, n, 1, -1}]]@ Map[Position[s, #][[All, 1]] &, Range[0, nn]]]@ PrimeOmega@ Range[2^nn]] (* or *) a = {1}; Do[Block[{r = {Prime@ n}}, Do[AppendTo[r, SelectFirst[ Range[a[[-(n - i)]] + 1, 2^n], PrimeOmega@ # == i &]], {i, 2, n - 1}]; a = Join[a, {0}, If[n == 1, {}, r], {2^n}]], {n, 11}]; a (* Michael De Vlieger, May 24 2017 *)
-
Python
from math import isqrt, comb, prod from sympy import prime, primerange, integer_nthroot, primepi def A091538(n): a = (m:=isqrt(k:=n+1<<1))+(k>m*(m+1)) r = n-comb(a,2) w = a-r if r==0: return int(w==1) if r==1: return prime(w) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(w+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,r))) return bisection(f,w,w) # Chai Wah Wu, Jun 11 2025
Formula
For n>=m>=1: a(n, m)= (n-m+1)-th member in the strictly monotonically increasing sequence of numbers N satisfying: N=product(p(k)^(e_k), k=1..) with p(k) := A000040(k) (k-th prime) such that sum(e_k, k=1..) = m, where the e_k are nonnegative. if m=0 : a(n, 0)=1 if n=0 else 0. If n
Comments