This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091543 #20 Aug 27 2022 17:13:43 %S A091543 1,2,1,4,6,1,8,72,12,1,16,1440,360,20,1,32,43200,20160,1120,30,1,64, %T A091543 1814400,1814400,123200,2700,42,1,128,101606400,239500800,22422400, %U A091543 491400,5544,56,1,256,7315660800,43589145600,6098892800,150368400 %N A091543 Triangle built from first column sequences of generalized Stirling2 arrays (m+2,2)-Stirling2, m >= 0. %H A091543 P. Blasiak, K. A. Penson, and A. I. Solomon, <a href="http://dx.doi.org/10.1016/S0375-9601(03)00194-4">The general boson normal ordering problem</a>, Phys. Lett. A 309 (2003) 198-205. %H A091543 P. Blasiak, K. A. Penson, and A. I. Solomon, <a href="http://www.arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004. %H A091543 Wolfdieter Lang, <a href="/A091543/a091543.txt">First 10 rows</a>. %H A091543 M. Schork, <a href="http://dx.doi.org/10.1088/0305-4470/36/16/314">On the combinatorics of normal ordering bosonic operators and deforming it</a>, J. Phys. A 36 (2003) 4651-4665. %F A091543 a(n, m) = m^(2*(n-m))*Pochhammer(1/m, n-m)*Pochhammer(2/m, n-m)/2 if n-1 >= m >= 1; a(n, 0) = 2^(n-1); otherwise 0. %F A091543 E.g.f. for m = 1, 2, ... column (without leading zeros and offset n=1): (hypergeom([1/m, 2/m], [], (m^2)*x)-1)/2. %F A091543 G.f. for m=1 column: x/(1-2*x); e.g.f.: (exp(2*x)-1)/2. %F A091543 a(n, m) = (1/2)*Product_{j=0..n-m-1} (m*j+2)*(m*j+1), n >= m+1 >= 1, otherwise 0. From eq. 12 of the Blasiak et al. reference with r=m+2, s=2, k=2. %Y A091543 Cf. A091547 (row sums), A091548 (alternating row sums). %Y A091543 For m = 0, 1, ..., 6 the column sequences are (without leading zeros): A000079 (powers of 2), A010796, A002674, A091535, A091544-6. %K A091543 nonn,easy,tabl %O A091543 1,2 %A A091543 _Wolfdieter Lang_, Feb 13 2004