cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091545 First column sequence of the array (7,2)-Stirling2 A091747.

Original entry on oeis.org

1, 42, 5544, 1507968, 696681216, 489070213632, 485157651922944, 646229992361361408, 1112808046846264344576, 2405890997281623512973312, 6380422924790865556405223424, 20366309975932442856045473169408, 77025384328976498881563979526701056, 340606249502734078054275917467072069632
Offset: 1

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

Also sixth column (m=5) sequence of triangle A091543.

Crossrefs

Programs

  • Mathematica
    a[n_] := 5^(2*n) * Pochhammer[1/5, n] * Pochhammer[2/5, n] / 2; Array[a, 15] (* Amiram Eldar, Sep 01 2025 *)

Formula

a(n) = Product_{j=0..n-1} ((5*j+2)*(5*j+1))/2, n>=1. From eq.12 of the Blasiak et al. reference with r=7, s=2, k=1.
a(n) = (5^(2*n))*risefac(1/5, n)*risefac(2/5, n)/2, n>=1, with risefac(x, n) = Pochhammer(x, n).
a(n) = fac5(5*n-3)*fac5(5*n-4)/2, n>=1, with fac5(5*n-4)/2 = A034323(n) and fac5(5*n-3) = A008548(n) (5-factorials).
E.g.f.: (hypergeom([1/5, 2/5], [], 25*x)-1)/2.
a(n) = A091747(n, 2), n>=1.
D-finite with recurrence a(n) - (5*n-3)*(5*n-4)*a(n-1) = 0. - R. J. Mathar, Jul 27 2022
a(n) ~ Pi * (5/e)^(2*n) * n^(2*n-2/5) / (Gamma(1/5) * Gamma(2/5)). - Amiram Eldar, Sep 01 2025
a(n) ~ sqrt(Pi*(1 + sqrt(5))) * 5^(2*n + 1/4) * n^(2*n - 2/5) / (Gamma(1/10) * 2^(7/10) * exp(2*n)). - Vaclav Kotesovec, Sep 01 2025