cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A091746 Generalized Stirling2 array (6,2).

Original entry on oeis.org

1, 30, 12, 1, 2700, 1920, 426, 36, 1, 491400, 478800, 162540, 25344, 1956, 72, 1, 150368400, 181440000, 80451000, 17624880, 2130660, 147840, 5820, 120, 1, 69470200800, 98424849600, 52905560400, 14618016000, 2346624000, 232202880
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A078740 (3, 2)-Stirling2, A090438 (4, 2)-Stirling2, A091534 (5, 2)-Stirling2.
Cf. A091544 (first column), A091550 (second column divided by 12).
Cf. A091748 (row sums), A091750 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := (-1)^k/k! Sum[(-1)^p Binomial[k, p] Product[FactorialPower[p + 4*(j-1), 2], {j, 1, n}], {p, 2, k}]; Table[a[n, k], {n, 1, 8}, {k, 2, 2n} ] // Flatten (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+4*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=6, s=2.
Recursion: a(n, k)=sum(binomial(2, p)*fallfac(4*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=6, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A091551 Second column (k=3) sequence of array ((7,2)-Stirling2) divided by 14.

Original entry on oeis.org

1, 228, 83232, 46854720, 38109367296, 42479241412608, 62290218157719552, 116373513947009679360, 270010358636135897235456, 762020881523854021734432768, 2571195906705444158241905836032, 10223478528521152233103572672184320, 47315411140234001777600560898513043456
Offset: 2

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Crossrefs

Cf. A091550 (second column of (6, 2)-Stirling2 array), A091552 (second column of (8, 2)-Stirling2 array).

Programs

  • Mathematica
    a[n_] := 5^(2*n) * Pochhammer[2/5, n] * (-3 * Pochhammer[1/5, n] + Pochhammer[3/5, n])/(3!*14); Array[a, 20, 2] (* Amiram Eldar, Aug 30 2025 *)

Formula

a(n) = Product_{j=0..n-1} (5*j+2) * (-3*Product_{j=0..n-1} (5*j+1) + Product_{j=0..n-1} (5*j+3)/(3!*14), n>=2. From eq.12 of the Blasiak et al. reference with r=7, s=2, k=3.
a(n) = (5^(2*n))*risefac(2/5, n) * (-3*risefac(1/5, n) + risefac(3/5, n))/(3!*14), n>=2, with risefac(x, n) = Pochhammer(x, n).
E.g.f.: (hypergeom([2/5, 3/5], [], 25*x) - 3*hypergeom([1/5, 2/5], [], 25*x) + 2)/(3!*14).
a(n) ~ sqrt(Pi) * 2^(2*n-4) * 3^(2*n-1) * n^(2*n-1/6) / (Gamma(1/3) * exp(2*n)). - Amiram Eldar, Aug 30 2025

Extensions

Offset corrected by Amiram Eldar, Aug 30 2025
Showing 1-2 of 2 results.