cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091570 Sum of odd proper divisors of n. Sum of the odd divisors of n that are less than n.

This page as a plain text file.
%I A091570 #26 Oct 11 2023 03:54:27
%S A091570 0,1,1,1,1,4,1,1,4,6,1,4,1,8,9,1,1,13,1,6,11,12,1,4,6,14,13,8,1,24,1,
%T A091570 1,15,18,13,13,1,20,17,6,1,32,1,12,33,24,1,4,8,31,21,14,1,40,17,8,23,
%U A091570 30,1,24,1,32,41,1,19,48,1,18,27,48,1,13,1,38,49
%N A091570 Sum of odd proper divisors of n. Sum of the odd divisors of n that are less than n.
%H A091570 Antti Karttunen, <a href="/A091570/b091570.txt">Table of n, a(n) for n = 1..10000</a>
%H A091570 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.
%F A091570 If n is odd, a(n) = A000593(n) - n; if n is even, a(n) = A000593(n). - _Michel Marcus_, Jan 14 2014
%F A091570 G.f.: Sum_{k>=1} (2*k-1) * x^(4*k-2) / (1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Apr 13 2021
%F A091570 Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)-1)/4 = 0.1612335167... . - _Amiram Eldar_, Oct 11 2023
%e A091570 The sum of odd divisors of 9 that are less than 9 is 1 + 3 = 4.
%t A091570 f[2, e_] := 1; f[p_, e_] := (p^(e+1)-1)/(p-1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n, 0]; Array[a, 75] (* _Amiram Eldar_, Oct 11 2023 *)
%o A091570 (PARI) a(n) = sumdiv(n , d, (d%2) * (d<n) * d); \\ _Michel Marcus_, Jan 14 2014
%Y A091570 Cf. A000035, A000593, A013661, A066191.
%Y A091570 Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), this sequence (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).
%K A091570 easy,nonn
%O A091570 1,6
%A A091570 _Mohammad K. Azarian_, Mar 04 2004