cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091573 Poincaré series [or Poincare series] of the preprojective algebra of an extended Dynkin diagram of type E_6.

Original entry on oeis.org

7, 12, 17, 24, 31, 36, 41, 48, 55, 60, 65, 72, 79, 84, 89, 96, 103, 108, 113, 120, 127, 132, 137, 144, 151, 156, 161, 168, 175, 180, 185, 192, 199, 204, 209, 216, 223, 228, 233, 240, 247, 252, 257, 264, 271, 276, 281, 288, 295, 300, 305, 312, 319, 324, 329
Offset: 0

Views

Author

Paul Boddington, Jan 22 2004

Keywords

References

  • I. Reiten, Dynkin diagrams and the representation theory of algebras, Notices of the AMS, Vol. 44, Number 5.

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ (7 - 2x + 7x^2) / (1 - 2x + 2x^2 - 2x^3 + x^4), {x, 0, 49}], x] (* Jean-François Alcover, Dec 02 2011 *)
  • PARI
    a(n) = (12+(-I)^n+I^n+12*n)/2 \\ Colin Barker, Oct 18 2015
    
  • PARI
    Vec((7-2*x+7*x^2)/((1+x^2)*(1-x)^2) + O(x^100)) \\ Colin Barker, Oct 18 2015
    
  • PARI
    a(n) = if(n%2 == 1, 6*n+6, if(n%4 == 0, 6*n+7, 6*n+5));
    vector(100, n, a(n-1)) \\ Altug Alkan, Oct 18 2015

Formula

a(n) = 6*n+6 (n odd), 6*n+7 (n==0 (mod 4)), 6*n+5 (n==2 (mod 4)).
G.f.: (7-2*x+7*x^2) / ((1+x^2)*(1-x)^2).
From Colin Barker, Oct 18 2015: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>3.
a(n) = (12+(-i)^n+i^n+12*n)/2 where i = sqrt(-1).
(End)

Extensions

G.f. corrected by Colin Barker, Oct 18 2015