This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091574 #39 Aug 25 2024 20:22:45 %S A091574 5,8,15,16,25,24,35,32,45,40,55,48,65,56,75,64,85,72,95,80,105,88,115, %T A091574 96,125,104,135,112,145,120,155,128,165,136,175,144,185,152,195,160, %U A091574 205,168,215,176,225,184,235,192,245,200,255,208 %N A091574 Poincaré series [or Poincare series] of the preprojective algebra of an extended Dynkin diagram of type D_4. %C A091574 a(n) is also the number of orbits of length n for T^2, if T is a map with n orbits of length n. - _Thomas Ward_, Apr 08 2009 %D A091574 I. Reiten, Dynkin diagrams and the representation theory of algebras, Notices of the AMS, May 1997, Vol. 44, Number 5. %H A091574 Harvey P. Dale, <a href="/A091574/b091574.txt">Table of n, a(n) for n = 0..1000</a> %H A091574 Apisit Pakapongpun and Thomas Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Ward/ward17.html">Functorial orbit counting</a>, Journal of Integer Sequences, 12 (2009) Article 09.2.4. %H A091574 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,-1) %F A091574 a(n) = 5*(2*n+1) if n even, 4*(n+1) if n odd. %F A091574 G.f.: (5+8*x+5*x^2)/(1-x^2)^2. %F A091574 a(n) = (1/n)*Sum_{d|n} mobius(n/d)*sigma_2(2*d). - _Thomas Ward_, Apr 08 2009 %e A091574 a(2) = (1/2)*mu(2)*sigma_2(2)+(1/2)*mu(1)*sigma_2(4) = 8. - _Thomas Ward_, Apr 08 2009 %t A091574 CoefficientList[ Series[ (5 + 8x + 5x^2) / (1 - 2x^2 + x^4), {x, 0, 51}], x] (* _Jean-François Alcover_, Dec 02 2011 *) %t A091574 With[{nn=40},Riffle[10*Range[nn]-5,8*Range[nn]]] (* or *) LinearRecurrence[ {0,2,0,-1},{5,8,15,16},80] (* _Harvey P. Dale_, Oct 30 2013 *) %o A091574 (PARI) (1/n)*sumdiv(n,d,moebius(n/d)*sumdiv(2*d,e,e^2)) \\ _Thomas Ward_, Apr 08 2009 %Y A091574 Cf. A091571, A091572, A091573, A091575, A091576, A091577. %K A091574 easy,nonn %O A091574 0,1 %A A091574 _Paul Boddington_, Jan 22 2004