This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091580 #18 Feb 16 2025 08:32:52 %S A091580 1,1,2,3,5,7,11,15,22,30,41,55,74,96,126,162,208,263,333,415,518,639, %T A091580 788,962,1174,1420,1716,2060,2468,2940,3497,4137,4886,5747,6744,7885, %U A091580 9203,10702,12424,14379,16611,19136,22009,25245,28915,33037,37688,42901,48765 %N A091580 Number of partitions of n into decimal palindromes. %H A091580 Alois P. Heinz, <a href="/A091580/b091580.txt">Table of n, a(n) for n = 0..10000</a> %H A091580 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a> %H A091580 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Partition.html">Partition</a> %e A091580 n=12: there are A000041(12)=77 partitions of 12, 3 of them contain non-palindromes: 12=10+2, 12=10+1+1 and 12 itself, therefore a(12)=77-3=74. %p A091580 p:= proc(n) option remember; local i, s; s:= ""||n; %p A091580 for i to iquo(length(s), 2) do if %p A091580 s[i]<>s[-i] then return false fi od; true %p A091580 end: %p A091580 h:= proc(n) option remember; `if`(n<1, 0, %p A091580 `if`(p(n), n, h(n-1))) %p A091580 end: %p A091580 b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, %p A091580 b(n, h(i-1))+b(n-i, h(min(n-i, i)))) %p A091580 end: %p A091580 a:= n-> b(n, h(n)): %p A091580 seq(a(n), n=0..100); # _Alois P. Heinz_, Sep 19 2018 %Y A091580 Cf. A002113, A091581. %Y A091580 Different from A088669 and from A000041. %Y A091580 Row sums of A319453. %K A091580 nonn,base %O A091580 0,3 %A A091580 _Reinhard Zumkeller_, Jan 22 2004 %E A091580 a(0)=1 prepended by _Alois P. Heinz_, Sep 17 2018