This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091581 #8 Feb 16 2025 08:32:52 %S A091581 1,1,1,2,2,3,4,5,6,8,9,11,13,14,17,19,21,23,26,27,30,32,34,36,37,39, %T A091581 40,42,42,44,44,45,45,47,47,47,49,48,50,50,52,52,55,55,58,60,60,64,65, %U A091581 68,69,73,73,77,78,82,84,84,88,88,92,92,96,96,100,100,105,107,107,113 %N A091581 Number of partitions of n into distinct decimal palindromes. %C A091581 Not the same as A088670: a(n) > A088670(n) for n > 101. %H A091581 Alois P. Heinz, <a href="/A091581/b091581.txt">Table of n, a(n) for n = 0..20000</a> %H A091581 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a> %H A091581 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Partition.html">Partition</a> %e A091581 n=13: there are A000009(13)=18 partitions of 13 into distinct integers, 4 of them contain non-palindromes: 13=12+1, 13=10+3, 13=10+2+1 and 13 itself, therefore a(13)=18-4=14; %e A091581 for n=14 there are a(14)=17 partitions into palindromes: 11+3 = 11+2+1 = 9+5 = 9+4+1 = 9+3+2 = 8+6 = 8+5+1 = 8+4+2 = 8+3+2+1 = 7+6+1 = 7+5+2 = 7+4+3 = 7+4+2+1 = 6+5+3 = 6+5+2+1 = 6+4+3+1 = 5+4+3+2. %Y A091581 Cf. A091580, A046489. %K A091581 nonn,base %O A091581 0,4 %A A091581 _Reinhard Zumkeller_, Jan 22 2004 %E A091581 a(0)=1 prepended by _Alois P. Heinz_, Sep 17 2018