This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091599 #12 Mar 30 2021 01:26:25 %S A091599 1,2,1,6,6,1,24,26,12,1,110,120,75,20,1,546,594,416,174,30,1,2856, %T A091599 3094,2289,1176,350,42,1,15504,16728,12768,7322,2880,636,56,1,86526, %U A091599 93024,72420,44388,20475,6324,1071,72,1,493350,528770,417240,267240,136252,51495,12740,1700,90,1 %N A091599 Triangle read by rows: T(n,k) is the number of nonseparable planar maps with r*n edges and a fixed outer face of r*k edges which are invariant under a rotation of 1/r for any r >= 2 (independent of actual value of r). %C A091599 Table I in the Brown reference. %H A091599 Andrew Howroyd, <a href="/A091599/b091599.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %H A091599 W. G. Brown, <a href="http://dx.doi.org/10.4153/CJM-1963-056-7">Enumeration of non-separable planar maps</a>, Canad. J. Math., 15 (1963), 526-545. %F A091599 T(n, k) = k*(Sum_{j=k..min(n, 2*k)} (2*j-k)*(j-1)!*(3*n-j-k-1)!/(((j-k)!)^2*(2*k-j)!*(n-j)!))/(2*n-k)! %e A091599 Triangle starts: %e A091599 1; %e A091599 2, 1; %e A091599 6, 6, 1; %e A091599 24, 26, 12, 1; %e A091599 110, 120, 75, 20, 1; %e A091599 ... %p A091599 T := proc(n,k) if k<=n then k*sum((2*j-k)*(j-1)!*(3*n-j-k-1)!/(j-k)!/(j-k)!/(2*k-j)!/(n-j)!,j=k..min(n,2*k))/(2*n-k)! else 0 fi end: seq(seq(T(n,k), k=1..n),n=1..11); %o A091599 (PARI) T(n, k) = k*sum(j=k, min(n, 2*k), (2*j-k)*(j-1)!*(3*n-j-k-1)!/(((j-k)!)^2*(2*k-j)!*(n-j)!))/(2*n-k)! %o A091599 for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ _Andrew Howroyd_, Mar 29 2021 %Y A091599 Column 1 gives A046646, column 2 gives A046647, row sums give A000259. %Y A091599 Same as A046651 but with rows reversed. %Y A091599 Cf. A046653, A091665. %K A091599 nonn,tabl %O A091599 1,2 %A A091599 _Emeric Deutsch_, Mar 03 2004 %E A091599 Name clarified by _Andrew Howroyd_, Mar 29 2021