cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091629 Product of digits associated with A091628(n). Essentially the same as A007283.

This page as a plain text file.
%I A091629 #49 Aug 27 2025 12:03:10
%S A091629 6,12,24,48,96,192,384,768,1536,3072,6144,12288,24576,49152,98304,
%T A091629 196608,393216,786432,1572864,3145728,6291456,12582912,25165824,
%U A091629 50331648,100663296,201326592,402653184,805306368,1610612736,3221225472
%N A091629 Product of digits associated with A091628(n). Essentially the same as A007283.
%C A091629 Sequence arising in _Farideh Firoozbakht_'s solution to Prime Puzzle 251 - 23 is the only pointer prime (A089823) not containing digit "1".
%C A091629 The monotonic increasing value of successive product of digits strongly suggests that in successive n the digit 1 must be present.
%H A091629 G. C. Greubel, <a href="/A091629/b091629.txt">Table of n, a(n) for n = 1..1000</a>
%H A091629 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A091629 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_251.htm">Puzzle 251, Pointer primes</a>, The Prime Puzzles and Problems Connection.
%H A091629 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (2).
%F A091629 a(n) = 3 * 2^n = product of digits of A091628(n).
%F A091629 From _Philippe Deléham_, Nov 23 2008: (Start)
%F A091629 a(n) = 6*2^(n-1).
%F A091629 a(n) = 2*a(n-1), with a(1) = 6.
%F A091629 G.f.: 6*x/(1-2*x). (End)
%F A091629 E.g.f.: 3*(exp(2*x) - 1). - _G. C. Greubel_, Jan 05 2023
%t A091629 3*2^Range[1, 60] (* _Vladimir Joseph Stephan Orlovsky_, Jun 09 2011 *)
%o A091629 (Magma) [3*2^n : n in [1..40]]; // _Wesley Ivan Hurt_, Jul 17 2020
%o A091629 (SageMath) [3*2^n for n in range(1,51)] # _G. C. Greubel_, Jan 05 2023
%Y A091629 Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), A005009 (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), A110288 (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).
%Y A091629 Cf. A089823, A091628, A091630, A091631, A091632.
%Y A091629 Similar to A003945, A042950, A058764, A087009, A081808.
%K A091629 base,easy,nonn,changed
%O A091629 1,1
%A A091629 _Enoch Haga_, Jan 24 2004
%E A091629 Edited and extended by _Ray Chandler_, Feb 07 2004