This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091630 #12 Feb 12 2021 18:16:15 %S A091630 29,235,2247,22271,222319,2222415,22222607,222222991,2222223759, %T A091630 22222225295,222222228367,2222222234511,22222222246799, %U A091630 222222222271375,2222222222320527,22222222222418831,222222222222615439 %N A091630 Numbers n + product of digits associated with A091628. %C A091630 Sequence arising in _Farideh Firoozbakht_'s solution to Prime Puzzle 251 - 23 is the only pointer prime (A089823) not containing the digit "1". %C A091630 The monotonically increasing value of successive product of digits (A091629) strongly suggests that in successive n the digit 1 must be present. %H A091630 Carlos Rivera's Prime Puzzles and Problems Connection, <a href="http://www.primepuzzles.net/puzzles/puzz_251.htm">Puzzle 251, Pointer primes</a> %H A091630 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (13,-32,20). %F A091630 a(n) = A091628(n) + A091629(n). %F A091630 From _Chai Wah Wu_, Feb 12 2021: (Start) %F A091630 a(n) = 13*a(n-1) - 32*a(n-2) + 20*a(n-3) for n > 3. %F A091630 G.f.: x*(-120*x^2 + 142*x - 29)/((x - 1)*(2*x - 1)*(10*x - 1)). (End) %e A091630 a(1) = 23 + 6 = 29. %Y A091630 Cf. A089823, A091628, A091629, A091631, A091632. %K A091630 base,easy,nonn %O A091630 1,1 %A A091630 _Enoch Haga_, Jan 24 2004 %E A091630 Edited and extended by _Ray Chandler_, Feb 07 2004