This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091672 #25 Feb 16 2025 08:32:52 %S A091672 5,0,5,4,6,2,0,1,9,7,1,7,3,2,6,0,0,6,0,5,2,0,0,4,0,5,3,2,2,7,1,4,0,2, %T A091672 5,9,9,8,5,1,2,9,0,1,4,8,1,7,4,2,0,8,9,2,1,8,8,9,9,3,4,8,7,8,8,6,0,2, %U A091672 8,7,7,3,4,5,1,1,7,3,8,1,6,8,0,0,5,3,7,2,4,7,0,6,9,8,9,6,0,3,7,9,7,5 %N A091672 Decimal expansion of (4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6)))*EllipticK((2-sqrt(3))*(-sqrt(2)+sqrt(3)))^2/Pi^2. %C A091672 Watson's third triple integral. %H A091672 G. C. Greubel, <a href="/A091672/b091672.txt">Table of n, a(n) for n = 0..10000</a> %H A091672 D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein, <a href="https://specfun.inria.fr/bostan/ExpMath19/BaileyBorweinKapoorWeisstein2006_-_Ten_Problems_in_Experimental_Mathematics.pdf">Ten Problems in Experimental Mathematics</a> %H A091672 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WatsonsTripleIntegrals.html">Watson's Triple Integrals</a> %e A091672 0.505462019717326006052004053227140259985129014817420892188993487886... %p A091672 evalf((4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6)))*EllipticK((2-sqrt(3))*(-sqrt(2)+sqrt(3)))^2/Pi^2, 120); # _Vaclav Kotesovec_, Apr 22 2015 %t A091672 RealDigits[ N[ (4*(18 + 12*Sqrt[2] - 10*Sqrt[3] - 7*Sqrt[6])*EllipticK[(2 - Sqrt[3])^2*(-Sqrt[2] + Sqrt[3])^2]^2)/Pi^2, 102]][[1]] (* _Jean-François Alcover_, Nov 12 2012, after _Eric W. Weisstein_ *) %o A091672 (PARI) 4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6))*ellK((2-sqrt(3))*(sqrt(3)-sqrt(2)))^2/Pi^2 \\ _Charles R Greathouse IV_, Feb 04 2025 %Y A091672 Cf. A091670, A091671. %K A091672 nonn,cons %O A091672 0,1 %A A091672 _Eric W. Weisstein_, Jan 27 2004 %E A091672 Name corrected by _Charles R Greathouse IV_, Feb 04 2025