This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091741 #18 Aug 27 2022 14:45:25 %S A091741 1,4,1,-36,8,9,1,-288,18,83,18,1,7200,-2352,-2366,165,205,27,1,86400, %T A091741 -18000,-31936,-926,2735,565,41,1,-4233600,1647360,1541304,-286084, %U A091741 -187614,-1491,7056,1014,54,1,-67737600,19968480,27275064,-2562556,-3442594,-254583,115605,24906 %N A091741 Coefficients of certain polynomials related to array A078740 ((3,2)-Stirling2). %C A091741 A078740(n,k)=(((-1)^k)/k!)*sum(((-1)^j)*binomial(k,j)*risefac(j-1,n)*risefac(j,n),j=2..k) with risefac(x,n) := Pochhammer(x,n). %C A091741 The sequence of row lengths of this array is [1,2,4,5,7,8,10,11,...] = A001651(k-2) = floor((3*k-4)/2) for k>=2. %H A091741 Wolfdieter Lang, <a href="/A091741/a091741.txt">First 8 rows</a>. %F A091741 P(k, n) := (-1)^k*(k-1)!*(k-2)!*(Sum_{j=2..k} (-1)^j*binomial(k, j)*risefac(j-1, n)*risefac(j, n))/(n!^2*(n+1)*Product_{p=1..ceiling(k/2)-1} (n-p)) is a polynomial in n of degree A032766(k-2), k >= 2. risefac(x, n) := Pochhammer(x, n). %F A091741 a(k, m) = [n^m]P(k, n) with the above defined polynomials in n defined for k >= 2. %K A091741 sign,easy,tabf %O A091741 2,2 %A A091741 _Wolfdieter Lang_, Feb 13 2004