cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A091747 Generalized Stirling2 array (7,2).

Original entry on oeis.org

1, 42, 14, 1, 5544, 3192, 588, 42, 1, 1507968, 1165248, 321552, 41496, 2688, 84, 1, 696681216, 655966080, 232606080, 41497344, 4143552, 240240, 7980, 140, 1, 489070213632, 533531142144, 226306918656, 50249808000, 6575950080
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A078740 (3, 2)-Stirling2, A090438 (4, 2)-Stirling2, A091534 (5, 2)-Stirling2, A091746 (6, 2)-Stirling2.
Cf. A091545 (first column).
Cf. A091749 (row sums), A091751 (alternating row sums).

Formula

a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+5*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=7, s=2.
Recursion: a(n, k)=sum(binomial(2, p)*fallfac(5*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=7, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A091757 Generalized Bell numbers B_{8,2}.

Original entry on oeis.org

1, 73, 15945, 6993073, 5124715761, 5641397595321, 8700819552421753, 17898786381229403105, 47345052327747786859873, 156535091017683923932912041, 632460052562874236182866885161
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A091749 (B_{7, 2}).

Programs

  • Mathematica
    a[n_] := Sum[Product[FactorialPower[k+6*(j-1), 2], {j, 1, n}]/k!, {k, 2, Infinity}]/E; Array[a, 11] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n)=sum(A092077(n, k), k=2..2*n)= sum((1/k!)*product(fallfac(k+6*(j-1), 2), j=1..n), k=2..infinity)/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=8, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.

A091751 Alternating row sums of array A091747 (generalized Stirling2 array (7,2)).

Original entry on oeis.org

1, 29, 2899, 625381, 235735025, 137662456849, 115219635641083, 130892567494940777, 193870813073375001313, 362981045220391075931461, 838251579579056365127865923, 2340586894706172958195272669517, 7772441664087128321443493161452817
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The first negative term is the 159 digit number a(43)=-2116278545846...33655549.

Crossrefs

Cf. A091749 (row sums of A091747).

Formula

a(n)=sum(A091747(n, k)*(-1)^k, k=2..2*n), n>=1.
Showing 1-3 of 3 results.