This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091761 #74 Dec 23 2024 14:53:42 %S A091761 0,1,34,1155,39236,1332869,45278310,1538129671,52251130504, %T A091761 1775000307465,60297759323306,2048348816684939,69583562007964620, %U A091761 2363792759454112141,80299370259431848174,2727814796061228725775,92665403695822344828176,3147895910861898495432209 %N A091761 a(n) = Pell(4n) / Pell(4). %C A091761 A000129(k*n)/A000129(k) = ((sqrt(2)-1)^k(-1)^k-(sqrt(2)+1)^k)((sqrt(2)-1)^(k*n)(-1)^(k*n)-(sqrt(2)+1)^(k*n))/((sqrt(2)-1)^(2k)+(sqrt(2)+1)^(2k)-2(-1)^k). %C A091761 All squares of the form (3m-1)^3 + (3m)^3 + (3m+1)^3 (cf. A116108) are given for m = 24 b, where b is a square of this sequence. From Ribenboim & McDaniel, it follows there are no squares > 1 in this sequence. - _M. F. Hasler_, Jun 05 2007 %C A091761 A divisibility sequence, cf. R. K. Guy's post to the SeqFan list. - _M. F. Hasler_, Feb 05 2013 %C A091761 a(n) gives all nonnegative solutions of the Pell equation b(n)^2 - 32*(3*a(n))^2 = +1, together with b(n) = A056771(n). - _Wolfdieter Lang_, Mar 09 2019 %H A091761 M. F. Hasler, <a href="/A091761/b091761.txt">Table of n, a(n) for n = 0..99</a> %H A091761 R. K. Guy, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2013-February/010759.html">A new sequence</a>, post to the SeqFan list, Feb 05 2013. %H A091761 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A091761 Paulo Ribenboim and Wayne L. McDaniel, <a href="http://dx.doi.org/10.1006/jnth.1996.0068">The Square Terms in Lucas Sequences</a>, Journal of Number Theory 58, 104-123 (1996). %H A091761 <a href="/index/Di#divseq">Index to divisibility sequences</a> %H A091761 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (34,-1). %F A091761 G.f.: x/(1-34*x+x^2). %F A091761 a(n) = A000129(4n)/A000129(4). %F A091761 a(n) = ((1+sqrt(2))^(4n) - (1-sqrt(2))^(4n))*sqrt(2)/48. %F A091761 From _M. F. Hasler_, Jun 05 2007: (Start) %F A091761 a(n) = n (mod 2^m) for any m >= 0. %F A091761 a(n) = sinh(4*n*log(sqrt(2)+1))/(12*sqrt(2)). %F A091761 a(n) = A[1,1], first element of the 2 X 2 matrix A = (34,1;-1,0)^(n-1). (End) %F A091761 a(n) = 34*a(n-1) - a(n-2); a(0)=0, a(1)=1. - _Philippe Deléham_, Nov 03 2008 %F A091761 A029547(n) = a(n+1). - _M. F. Hasler_, Feb 05 2013 %F A091761 a(n) = sqrt((A056771(n)^2 - 1)/(32*9)), n >= 0. See the Pell remark above. - _Wolfdieter Lang_, Mar 11 2019 %F A091761 E.g.f.: exp(17*x)*sinh(12*sqrt(2)*x)/(12*sqrt(2)). - _Stefano Spezia_, Apr 16 2023 %F A091761 a(n) = A002965(8*n)/12. - _Gerry Martens_, Jul 14 2023 %p A091761 with (combinat):seq(fibonacci(4*n,2)/12, n=0..17); # _Zerinvary Lajos_, Apr 21 2008 %t A091761 LinearRecurrence[{34,-1}, {0,1}, 20] (* _G. C. Greubel_, Mar 11 2019 *) %o A091761 (PARI) A091761(n, x=[ -1,17],A=[17,72*4;1,17]) = vector(n,i,(x*=A)[1]) \\ _M. F. Hasler_, May 26 2007 %o A091761 (PARI) A091761(n)=([34,1;-1,0]^(n-1))[1,1] \\ _M. F. Hasler_, Jun 05 2007 %o A091761 (Sage) [lucas_number1(n,34,1) for n in range(0, 16)]# _Zerinvary Lajos_, Nov 07 2009 %o A091761 (Magma) I:=[0,1]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // _G. C. Greubel_, Mar 11 2019 %Y A091761 A029547 is an essentially identical sequence, cf. formula. %Y A091761 Cf. A000129, A001109, A002965, A029547, A041085, A056771, A116108. %K A091761 easy,nonn %O A091761 0,3 %A A091761 _Paul Barry_, Feb 06 2004