cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091783 Numbers with digits in nondecreasing order such that sum of the reciprocals of the digits is 1.

This page as a plain text file.
%I A091783 #19 Dec 12 2015 03:14:11
%S A091783 1,22,236,244,333,2488,2666,3366,3446,4444,26999,28888,33999,34688,
%T A091783 36666,44488,44666,55555,366999,368888,446999,448888,466688,666666,
%U A091783 3999999,4688999,4888888,6666999,6668888,7777777,66999999,68888999,88888888,999999999
%N A091783 Numbers with digits in nondecreasing order such that sum of the reciprocals of the digits is 1.
%C A091783 236 is a member but 263, 326, 362, 623, 632 which are digit permutations of 236 are not included (unlike A037268).
%C A091783 By definition, this is a subsequence of A052382 (zeroless numbers). - _Michel Marcus_, Jul 06 2015
%e A091783 236 is a member as 1/2 + 1/3 + 1/6 = 1.
%p A091783 F:= proc(t,ns) option remember;
%p A091783    local n0, k,r;
%p A091783    if ns = [] then
%p A091783       if t = 0 then return {[]}
%p A091783       else return {}
%p A091783       fi;
%p A091783    fi;
%p A091783    n0:= ns[1];
%p A091783    `union`(seq(map(r -> [k,op(r)], procname(t - k/n0, ns[2..-1])),k=0..floor(t*n0)));
%p A091783 end proc:
%p A091783 g:= proc(t) local L,i; L:= [seq(i$t[i],i=1..9)]; add(L[i]*10^(nops(L)-i),i=1..nops(L)) end proc:
%p A091783 sort(convert(map(g,F(1,[$1..9])),list)); # _Robert Israel_, Jul 06 2015
%o A091783 (PARI) lista(nn) = {for (n=1, nn, d = digits(n); if (vecmin(d) && (vecsort(d)==d) && (sum(k=1, #d, 1/d[k])==1), print1(n, ", ")););} \\ _Michel Marcus_, Jul 06 2015
%Y A091783 Cf. A037268, A052382.
%K A091783 base,fini,nonn,full
%O A091783 1,2
%A A091783 _Amarnath Murthy_, Feb 17 2004
%E A091783 More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Apr 17 2004
%E A091783 Incorrect term 39999 corrected to 33999 by _Thomas Oléron Evans_, Jul 06 2015