A091847 Perfect totient numbers, omitting powers of 3.
15, 39, 111, 183, 255, 327, 363, 471, 2199, 3063, 4359, 4375, 5571, 8751, 15723, 36759, 46791, 65535, 140103, 208191, 441027, 4190263, 9056583, 57395631, 172186887, 236923383, 918330183, 3932935775, 4294967295, 4764161215
Offset: 1
Keywords
Links
- Douglas E. Iannucci, Deng Moujie and Graeme L. Cohen, On Perfect Totient Numbers, J. Integer Seqs., Vol. 6, 2003.
Crossrefs
A082897 has more information.
Programs
-
Mathematica
fQ[n_] := !IntegerQ@ Log[3, n] && Plus @@ FixedPointList[ EulerPhi@# &, n] == 2n + 1 (* Robert G. Wilson v, Nov 06 2010 *)
-
Python
from itertools import count, islice from gmpy2 import digits from sympy import totient def A091847_gen(startvalue=3): # generator of terms >= startvalue for n in count((k:=max(startvalue,3))+1-(k&1),2): t = digits(n,3) if t.count('0') != len(t)-1: m, s = n, 1 while (m:=totient(m))>1: s += m if s == n: yield n A091847_list = list(islice(A091847_gen(),10)) # Chai Wah Wu, Mar 24 2023