A091866 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having pyramid weight k.
1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 1, 5, 8, 0, 0, 1, 7, 18, 16, 0, 0, 1, 9, 34, 56, 32, 0, 0, 1, 11, 55, 138, 160, 64, 0, 0, 1, 13, 81, 275, 500, 432, 128, 0, 0, 1, 15, 112, 481, 1205, 1672, 1120, 256, 0, 0, 1, 17, 148, 770, 2471, 4797, 5264, 2816, 512, 0, 0, 1, 19, 189, 1156, 4536, 11403, 17738, 15808, 6912, 1024
Offset: 0
Examples
T(4,3)=5 because the Dyck paths of semilength 4 having pyramid weight 3 are: (ud)u(ud)(ud)d, u(ud)(ud)d(ud), u(ud)(ud)(ud)d, u(ud)(uudd)d and u(uudd)(ud)d [here u=(1,1), d=(1,-1) and the maximal pyramids, of total length 3, are shown between parentheses]. Triangle begins: 1; 0, 1; 0, 0, 2; 0, 0, 1, 4; 0, 0, 1, 5, 8; 0, 0, 1, 7, 18, 16; 0, 0, 1, 9, 34, 56, 32; 0, 0, 1, 11, 55, 138, 160, 64; 0, 0, 1, 13, 81, 275, 500, 432, 128; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Xiaomei Chen, Yuan Xiang, Counting generalized Schröder paths, arXiv:2009.04900 [math.CO], 2020.
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
- D. E. Knuth, Problems That Philippe Would Have Loved, Paris 2014.
Programs
-
Mathematica
nmax=11; DELTA[r_, s_] := Module[{m=Min[Length[r], Length[s]], p, q, t, x, y}, q[k_] := x*r[[k+1]] + y*s[[k+1]]; p[0, ] = 1; p[, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k-1] + q[k]*p[n-1, k+1] // Expand; t[n_, k_] := Coefficient[p[n, 0], x^(n-k)*y^k]; t[0, 0] = p[0, 0]; Table[ t[n, k], {n, 0, m}, {k, 0, n}]]; Table[Mod[1+2n^2,3], {n,nmax}] ~DELTA~ Table[1-Mod[1+2n^2,3], {n,nmax}] (* Jean-François Alcover, Jun 06 2019 *)
Formula
G.f.: G = G(t, z) satisfies z(1-tz)G^2-(1+z-2tz)G+1-tz = 0.
Sum_{k=0..n} T(n,k) = A000108(n). - Philippe Deléham, Aug 18 2006
Comments