This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091870 #41 Sep 08 2022 08:45:13 %S A091870 0,1,8,53,336,2105,13144,81997,511392,3189169,19888040,124023461, %T A091870 773419248,4823095913,30077155576,187563189565,1169656805184, %U A091870 7294059356257,45486249993032,283655347025429,1768894026280080 %N A091870 A trinomial transform of Fibonacci(3n). %C A091870 Binomial transform of A084326. %C A091870 Second binomial transform of A001076(n) = Fibonacci(3n)/2. %H A091870 Seiichi Manyama, <a href="/A091870/b091870.txt">Table of n, a(n) for n = 0..1258</a> %H A091870 S. Falcon, <a href="http://dx.doi.org/10.9734/BJMCS/2014/11783">Iterated Binomial Transforms of the k-Fibonacci Sequence</a>, British Journal of Mathematics & Computer Science, 4 (22): 2014. %H A091870 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-11). %F A091870 G.f.: x/(1 - 8*x + 11*x^2). %F A091870 a(n) = sqrt(5) * ((4+sqrt(5))^n - (4-sqrt(5))^n) / 10. %F A091870 a(n) = Sum_{i=0..n} Sum_{j=0..n} (n!/(i!*j!*(n-i-j)!)) * Fibonacci(3*i) / 2. %t A091870 LinearRecurrence[{8, -11}, {0, 1}, 30] (* _G. C. Greubel_, May 21 2019 *) %t A091870 CoefficientList[Series[x/(1 - 8 x + 11 x^2), {x, 0, 30}], x] (* _Michael De Vlieger_, Sep 22 2017 *) %o A091870 (Sage) [lucas_number1(n,8,11) for n in range(0, 30)] # _Zerinvary Lajos_, Apr 23 2009 %o A091870 (PARI) my(x='x+O('x^30)); concat([0], Vec(x/(1 -8*x +11*x^2))) \\ _G. C. Greubel_, May 21 2019 %o A091870 (Magma) [n le 2 select n-1 else 8*Self(n-1) -11*Self(n-2): n in [1..30]]; // _G. C. Greubel_, May 21 2019 %o A091870 (GAP) a:=[0,1];; for n in [3..30] do a[n]:=8*a[n-1]-11*a[n-2]; od; a; # _G. C. Greubel_, May 21 2019 %Y A091870 Cf. A084326. %K A091870 nonn,easy %O A091870 0,3 %A A091870 _Paul Barry_, Feb 06 2004