This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091913 #28 Feb 06 2022 06:52:07 %S A091913 0,1,3,2,7,9,3,15,28,18,4,31,75,70,30,5,63,186,225,140,45,6,127,441, %T A091913 651,525,245,63,7,255,1016,1764,1736,1050,392,84,8,511,2295,4572,5292, %U A091913 3906,1890,588,108,9,1023,5110,11475,15240,13230,7812,3150,840,135,10,2047 %N A091913 Triangle read by rows: a(n,k) = C(n,k)*(2^(n-k) - 1) for k<n, a(n,k) = 0 for k >= n, where k=0..max(n-1,0). %C A091913 Row lengths are 1,1,2,3,4,... = A028310. - _M. F. Hasler_, Jul 21 2012 %C A091913 Rows: Sum of the n-th row = A001047(n); Sum of the n-th row excluding column 0 = A028243(n+1). Columns: a(n,0) = A000225(n); a(n,1) = A058877(n). Diagonals: a(n,n-2) = A045943(n-1). Also note that the sums of the antidiagonals = A006684. %C A091913 As an infinite lower triangular matrix * the Bernoulli numbers as a vector (Cf. A027641) = the natural numbers: [1, 2, 3, ...]. The same matrix * the Bernoulli number version starting [1, 1/2, 1/6, ...] = A001787: (1, 4, 12, 32, ...). - _Gary W. Adamson_, Mar 13 2012 %F A091913 For k>=n, a(n, k) = 0; for k < n, a(n, k) = C(n, k) * (2^(n-k) - 1) = Sum [C(n,k) * C(n-k, m), {m=1 to n-k}]. [Formula corrected Aug 22 2006] %F A091913 The triangle (1; 3,2; 7,9,3; ...) = A007318^2 - A007318, then delete the right border of zeros. - _Gary W. Adamson_, Nov 16 2007 %F A091913 O.g.f.: 1/( (1 - (1 + x)*t)*(1 - (2 + x)*t) ) = 1 + (3 + 2*x)*t + (7 + 9*x + 3*x^2)*t^2 + .... - _Peter Bala_, Jul 16 2013 %e A091913 Triangle begins %e A091913 0; %e A091913 1; %e A091913 3, 2; %e A091913 7, 9, 3; %e A091913 15, 28, 18, 4; %e A091913 31, 75, 70, 30, 5; %e A091913 63, 186, 225, 140, 45, 6; %e A091913 ... %e A091913 a(5,3) = 30 because C(5,3) = 10, 2^(5 - 3) - 1 = 3 and 10 * 3 = 30. %Y A091913 Cf. A007318, A038207. %Y A091913 Cf. A001787, A027641, A027642. %K A091913 easy,nonn,tabf %O A091913 0,3 %A A091913 _Ross La Haye_, Mar 10 2004 %E A091913 More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004