cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091932 Primes that remain prime when their leading digit in binary representation is replaced by 0.

This page as a plain text file.
%I A091932 #21 Jul 11 2021 07:21:44
%S A091932 7,11,13,19,23,29,37,43,61,67,71,83,101,107,131,139,151,157,181,199,
%T A091932 211,229,241,263,269,293,317,353,359,383,419,449,467,479,523,541,571,
%U A091932 601,613,619,643,661,691,709,739,751,769,823,829,859,991,1021,1031,1061
%N A091932 Primes that remain prime when their leading digit in binary representation is replaced by 0.
%C A091932 A053645(a(n)) is prime.
%C A091932 Primes p such that p - 2^floor(log_2(p)) is prime - _T. D. Noe_, Apr 08 2011
%H A091932 T. D. Noe, <a href="/A091932/b091932.txt">Table of n, a(n) for n = 1..1000</a>
%F A091932 A118953(A049084(a(n))) = 1; subsequence of A065380. - _Reinhard Zumkeller_, May 07 2006
%e A091932 A000040(12)=37 --> '100101' --> '[1]00101' --> '[0]00101' --> '101' --> 5, therefore 37 is a term.
%t A091932 Select[Prime[Range[100]], PrimeQ[# - 2^Floor[Log[2, #]]] &] (* _T. D. Noe_, Apr 08 2011 *)
%t A091932 Select[Prime[Range[200]],PrimeQ[FromDigits[Rest[ IntegerDigits[ #,2]],2]]&] (* _Harvey P. Dale_, Apr 08 2016 *)
%o A091932 (Python)
%o A091932 from sympy import isprime, primerange
%o A091932 def ok(p): return isprime((1 << (p.bit_length()-1)) ^ p)
%o A091932 def aupto(lim): return [p for p in primerange(1, lim+1) if ok(p)]
%o A091932 print(aupto(1061)) # _Michael S. Branicky_, Jul 11 2021
%Y A091932 Cf. A091931.
%Y A091932 Cf. A118958.
%K A091932 nonn
%O A091932 1,1
%A A091932 _Reinhard Zumkeller_, Feb 14 2004