This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091939 #10 Dec 13 2023 10:49:24 %S A091939 11,23,29,41,43,47,61,67,83,89,211,2111,4111,11161,11411,16111,111121, %T A091939 111211,111611,112111,611111,1111211,1114111,11111141,11111161, %U A091939 11141111,61111111,1111111121,1111111411,1111211111,1111411111,1121111111 %N A091939 Prime numbers with prime sum of any two digits. %C A091939 All repunit primes (A004022) are terms. All other terms contain exactly one nonzero even digit. All non-repunit terms with k>2 digits must contain exactly k-1 copies of the digit 1, including final digit 1 and the remaining digit must be either 2, 4, or 6. %C A091939 a(3330) has 1001 digits. - _Michael S. Branicky_, Dec 13 2023 %H A091939 Michael S. Branicky, <a href="/A091939/b091939.txt">Table of n, a(n) for n = 1..3329</a> %e A091939 2111 is a term because it is prime and all sums of any two of its digits are 2+1 = 3 or 1+1 = 2, both of which are primes. %o A091939 (Python) %o A091939 from gmpy2 import is_prime %o A091939 from itertools import count, islice %o A091939 def agen(): # generator of terms %o A091939 yield from [11, 23, 29, 41, 43, 47, 61, 67, 83, 89] %o A091939 for k in count(3): %o A091939 b = (10**k-1)//9 %o A091939 if is_prime(b): yield b %o A091939 dlst = [j for j in [1, 3, 5] if (k+j)%3] %o A091939 for i in range(1, k): %o A091939 c = 10**i %o A091939 for d in dlst: %o A091939 if is_prime(b + c*d): yield b + c*d %o A091939 print(list(islice(agen(), 32))) # _Michael S. Branicky_, Dec 13 2023 %Y A091939 Cf. A004022 (repunit primes). %K A091939 base,nonn %O A091939 1,1 %A A091939 _Rick L. Shepherd_, Feb 16 2004