cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091954 Number of odd proper divisors of n. That is, the number of odd divisors of n that are less than n.

This page as a plain text file.
%I A091954 #31 Nov 26 2023 03:10:28
%S A091954 0,1,1,1,1,2,1,1,2,2,1,2,1,2,3,1,1,3,1,2,3,2,1,2,2,2,3,2,1,4,1,1,3,2,
%T A091954 3,3,1,2,3,2,1,4,1,2,5,2,1,2,2,3,3,2,1,4,3,2,3,2,1,4,1,2,5,1,3,4,1,2,
%U A091954 3,4,1,3,1,2,5,2,3,4,1,2,4,2,1,4,3,2,3,2,1,6,3,2,3,2,3,2,1,3,5,3,1,4,1,2,7,2,1,4,1,4
%N A091954 Number of odd proper divisors of n. That is, the number of odd divisors of n that are less than n.
%H A091954 Antti Karttunen, <a href="/A091954/b091954.txt">Table of n, a(n) for n = 1..10000</a>
%F A091954 From _Antti Karttunen_, Oct 04 2017: (Start)
%F A091954 a(n) = Sum_{d|n, d<n} A000035(n).
%F A091954 a(n) = A001227(n) - A000035(n).
%F A091954 a(n) = A007814(A293214(n)) = A007814(A293216(n)).
%F A091954 (End)
%F A091954 G.f.: Sum_{k>=2} x^k/(1 - x^(2*k)). - _Seiichi Manyama_, Jan 23 2021
%F A091954 Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma + log(2)/2 - 1)*n, where gamma is Euler's constant (A001620). - _Amiram Eldar_, Nov 26 2023
%e A091954 The odd divisors of 15 that are less than 15 are 1, 3 and 5. Therefore there are three odd divisors of 15 that are less than 15.
%t A091954 Count[Most[Divisors[#]],_?OddQ]&/@Range[100] (* _Harvey P. Dale_, Sep 28 2012 *)
%t A091954 a[n_] := DivisorSigma[0, n/2^IntegerExponent[n, 2]] - Boole[OddQ[n]]; Array[a, 100] (* _Amiram Eldar_, Jun 11 2022 *)
%o A091954 (PARI) A091954(n) = sumdiv(n,d,(d<n)*(d%2)); \\ _Antti Karttunen_, Oct 04 2017
%o A091954 (PARI) my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=2, N, x^k/(1-x^(2*k))))) \\ _Seiichi Manyama_, Jan 23 2021
%Y A091954 Cf. A000005, A000035, A001620, A032741, A001227, A293214, A293216.
%Y A091954 Sum of the k-th powers of the odd proper divisors of n for k=0..10: this sequence (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).
%Y A091954 Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: this sequence (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).
%K A091954 easy,nonn
%O A091954 1,6
%A A091954 _Mohammad K. Azarian_, Mar 12 2004
%E A091954 Corrected and extended by _Harvey P. Dale_, Sep 28 2012