cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091964 Number of left factors of peakless Motzkin paths of length n.

This page as a plain text file.
%I A091964 #66 Jan 27 2025 10:19:45
%S A091964 1,2,4,9,21,50,121,296,730,1812,4521,11328,28485,71844,181674,460443,
%T A091964 1169283,2974574,7578937,19337489,49401526,126350742,323495259,
%U A091964 829033334,2126454271,5458711430,14023219126,36049991901,92734505565
%N A091964 Number of left factors of peakless Motzkin paths of length n.
%C A091964 Number of paths from (0,0) to the line x=n, consisting of steps u=(1,1), h=(1,0), d=(1,-1), that never go below the x-axis and a u step is never followed by a d step.
%C A091964 a(n) is also the number of peakless Motzkin paths of length n in which the (1,0)-steps at level 0 come in 2 colors. Example: a(4)=21 because, denoting u=(1,1), h=(1,0), and d=(1,-1), we have 2^4 = 16 paths of shape hhhh, 2 paths of shape huhd, 2 paths of shape uhdh, and 1 path of shape uhhd. - _Emeric Deutsch_, May 03 2011
%C A091964 Equals diagonal sums of triangle A124428. - _Paul D. Hanna_, Oct 31 2006
%H A091964 Vincenzo Librandi, <a href="/A091964/b091964.txt">Table of n, a(n) for n = 0..1000</a>
%H A091964 Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, <a href="http://doi.org/10.1007/978-3-319-77313-1_15">Analytic Combinatorics of Lattice Paths with Forbidden Patterns: Enumerative Aspects</a>, in International Conference on Language and Automata Theory and Applications, S. Klein, C. Martín-Vide, D. Shapira (eds), Springer, Cham, pp 195-206, 2018.
%H A091964 Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, <a href="https://lipn.univ-paris13.fr/~banderier/Papers/patterns2019.pdf">Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata</a>, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
%H A091964 Ivo L. Hofacker, Christian M. Reidys, and Peter F. Stadler, <a href="http://dx.doi.org/10.1016/j.disc.2011.06.004">Symmetric circular matchings and RNA folding</a>. Discr. Math., 312:100-112, 2012. See Prop. 5, C_2^{1}(z).
%H A091964 Asamoah Nkwanta, <a href="https://bookstore.ams.org/dimacs-34/">Lattice paths and RNA secondary structures</a>, DIMACS Series in Discrete Math. and Theoretical Computer Science, 34, 1997, 137-147.
%H A091964 Helmut Prodinger, <a href="https://arxiv.org/abs/2501.13645">Cornerless, peakless, valleyless Motzkin paths (regular and skew) and applications to bargraphs</a>, arXiv:2501.13645 [math.CO], 2025. See p. 8.
%F A091964 G.f.: 2/(1 - 3*z + z^2 + sqrt(1 - 2*z - z^2 - 2*z^3 + z^4)).
%F A091964 a(n) = Sum_{k=0..n} C(n-floor(k/2), floor((k+1)/2)) * C(n-floor((k+1)/2), floor(k/2)). - _Paul D. Hanna_, Mar 24 2005
%F A091964 a(n) = Sum_{k=0..n} C(floor((n+k)/2),k)*C(floor((n+k+1)/2),k). - _Paul D. Hanna_, Oct 31 2006
%F A091964 G.f.: 1/(1-x-x/(1-x^2/(1-x/(1-x^2/(1-x/(1-x^2/(1-... (continued fraction). - _Paul Barry_, Jun 30 2009
%F A091964 D-finite with recurrence (n+1)*a(n) + 2*(-n-1)*a(n-1) + (-n+1)*a(n-2) + 2*(-n+3)*a(n-3) + (n-3)*a(n-4) = 0. - _R. J. Mathar_, Nov 24 2012
%F A091964 a(n) ~ (3+sqrt(5))^n / (sqrt(7*sqrt(5)-15) * sqrt(Pi*n) * 2^(n-1/2)). - _Vaclav Kotesovec_, Feb 12 2014
%F A091964 Equivalently, a(n) ~ phi^(2*n + 2) / (5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Dec 08 2021
%e A091964 a(2)=4 because we have hh, hu, uh and uu.
%t A091964 CoefficientList[Series[2/(1-3*x+x^2+Sqrt[1-2*x-x^2-2*x^3+x^4]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 12 2014 *)
%o A091964 (PARI) a(n)=sum(k=0,n,binomial(n-k\2,(k+1)\2)*binomial(n-(k+1)\2,k\2)) \\ _Paul D. Hanna_, Mar 24 2005
%o A091964 (PARI) a(n)=sum(k=0,n,binomial((n+k)\2,k)*binomial((n+k+1)\2,k)) \\ _Paul D. Hanna_, Oct 31 2006
%o A091964 (Magma) [(&+[Binomial(Floor((n+k)/2),k)*Binomial(Floor((n+k+1)/2),k): k in [0..n]]): n in [0..30]]; // _G. C. Greubel_, Feb 26 2019
%o A091964 (Sage) [sum(binomial(floor((n+k)/2),k)*binomial(floor((n+k+1)/2),k) for k in (0..n)) for n in (0..30)] # _G. C. Greubel_, Feb 26 2019
%Y A091964 Cf. A004148, A104559, A124428.
%K A091964 nonn
%O A091964 0,2
%A A091964 _Emeric Deutsch_, Mar 13 2004