cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091970 a(1) = 0; for n>1, find largest integer k such that the word a(1)a(2)...a(n-1) is of the form xy^k for words x and y (where y has positive length), i.e., k = the maximal number of repeating blocks at the end of the sequence so far; then a(n) = floor(k/2).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2
Offset: 1

Views

Author

N. J. A. Sloane, Mar 14 2004

Keywords

Comments

When does the first 3 occur? The first 4?

Crossrefs

A (presumably) even slower-growing sequence than A090822.