A091970 a(1) = 0; for n>1, find largest integer k such that the word a(1)a(2)...a(n-1) is of the form xy^k for words x and y (where y has positive length), i.e., k = the maximal number of repeating blocks at the end of the sequence so far; then a(n) = floor(k/2).
0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2
Offset: 1
Keywords
Links
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2.
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps].
- Index entries for sequences related to Gijswijt's sequence
Crossrefs
A (presumably) even slower-growing sequence than A090822.
Comments