A091977 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k exterior pairs.
1, 1, 2, 4, 1, 8, 5, 1, 16, 18, 7, 1, 32, 56, 34, 9, 1, 64, 160, 138, 55, 11, 1, 128, 432, 500, 275, 81, 13, 1, 256, 1120, 1672, 1205, 481, 112, 15, 1, 512, 2816, 5264, 4797, 2471, 770, 148, 17, 1, 1024, 6912, 15808, 17738, 11403, 4536, 1156, 189, 19, 1, 2048, 16640
Offset: 0
Examples
T(4,1)=5 because the Dyck paths of semilength 4 having 1 exterior pair are: ud(u)udud(d), (u)udud(d)ud, (u)ududud(d), (u)uduudd(d) and (u)uuuddud(d) [the u and d that form the unique exterior pair are shown between parentheses]. Triangle begins: [1], [1], [2], [4, 1], [8, 5, 1], [16, 18, 7, 1], [32, 56, 34, 9, 1], [64, 160, 138, 55, 11, 1], [128, 432, 500, 275, 81, 13, 1] Triangle (1,1,0,1,1,0,1,1,...) DELTA (0,0,1,0,0,1,0,0,1,...) begins : 1 1, 0 2, 0, 0 4, 1, 0, 0 8, 5, 1, 0, 0 16, 18, 7, 1, 0, 0 32, 56, 34, 9, 1, 0, 0 64, 160, 138, 55, 11, 1, 0, 0...- _Philippe Deléham_, Feb 06 2012
Links
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
Crossrefs
Formula
G.f.=G=G(t, z) satisfies tz(1-z)G^2-(1+tz-2z)G+1-z=0.
Comments