This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A091980 #43 Feb 18 2025 20:36:07 %S A091980 1,2,3,5,7,11,16,26,36,56,81,131,183,287,417,677,937,1457,2107,3407, %T A091980 4759,7463,10843,17603,24373,37913,54838,88688,123892,194300,282310, %U A091980 458330,634350,986390,1426440,2306540,3221844,5052452,7340712,11917232,16500522 %N A091980 Recursive sequence; one more than maximum of products of pairs of previous terms with indices summing to current index. %C A091980 The maximum is always obtained by taking i as the power of 2 nearest to n/2. - _Anna de Mier_, Mar 12 2012 %C A091980 a(n) is the number of (binary) max-heaps on n-1 elements from the set {0,1}. a(7) = 16: 000000, 100000, 101000, 101001, 110000, 110010, 110100, 110110, 111000, 111001, 111010, 111011, 111100, 111101, 111110, 111111. - _Alois P. Heinz_, Jul 09 2019 %D A091980 A. de Mier and M. Noy, On the maximum number of cycles in outerplanar and series-parallel graphs, Graphs Combin., 28 (2012), 265-275. %H A091980 Alois P. Heinz, <a href="/A091980/b091980.txt">Table of n, a(n) for n = 1..5652</a> %H A091980 F. Disanto and N. A. Rosenberg, <a href="https://doi.org/10.1089/cmb.2016.0159">Enumeration of ancestral configurations for matching gene trees and species trees</a>, J. Comput. Biol. 24 (2017), 831-850. See Section 4.2. %H A091980 A. de Mier and M. Noy, <a href="https://doi.org/10.1016/j.endm.2009.07.081">On the maximum number of cycles in outerplanar and series-parallel graphs</a>, Elect. Notes Discr. Math 34 (2009) 489-493 %H A091980 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Heap.html">Heap</a> %H A091980 Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_heap">Binary heap</a> %F A091980 a(n) = 1 + max_{i=1..n-1} a(i)*a(n-i) for n > 1, a(1) = 1. %F A091980 From _Alois P. Heinz_, Jul 09 2019: (Start) %F A091980 a(n) = Sum_{k=0..n-1} A309049(n-1,k). %F A091980 a(2^(n-1)) = A003095(n). (End) %p A091980 b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> %p A091980 1+b(f)*b(n-1-f))(min(g-1, n-g/2)))(2^ilog2(n))) %p A091980 end: %p A091980 a:= n-> b(n-1): %p A091980 seq(a(n), n=1..50); # _Alois P. Heinz_, Jul 09 2019 %t A091980 a[n_] := a[n] = 1 + Max[Table[a[i] a[n-i], {i, n-1}]]; a[1] = 1; %t A091980 Array[a, 50] (* _Jean-François Alcover_, Apr 30 2020 *) %Y A091980 Cf. A003095, A056971, A309049. %Y A091980 Partial differences give A168542. %Y A091980 a(n) = A355108(n)+1. %Y A091980 Column k=0 of A370484 and of A372640. %K A091980 easy,nonn %O A091980 1,2 %A A091980 _Franklin T. Adams-Watters_, Mar 15 2004