This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092028 #11 Feb 15 2020 00:18:07 %S A092028 2,3,2,5,2,7,2,3,2,11,2,13,2,3,2,17,2,19,2,3,2,23,2,5,2,3,2,29,2,31,2, %T A092028 3,2,5,2,37,2,3,2,41,2,43,2,3,2,47,2,7,2,3,2,53,2,5,2,3,2,59,2,61,2,3, %U A092028 2,5,2,67,2,3,2,71,2,73,2 %N A092028 a(n) is the smallest m > 1 such that m divides n^m-1. %C A092028 Each prime factor of n-1 is a solution of the equation Mod[n^x-1,x]=0, so a(n) is not greater than smallest prime factor of n-1. Conjecture 1: All terms of this sequence are primes. Conjecture 2: a(n) is the smallest prime factor of n-1 or For n>2 A092028(n)=A020639(n-1). %H A092028 Charles R Greathouse IV, <a href="/A092028/b092028.txt">Table of n, a(n) for n = 3..10000</a> %F A092028 a[n_] := (For[k=2, Mod[n^k-1, k]>0, k++ ];k) %e A092028 a(8)=7 because 7 divides 8^7-1 and there doesn't exist an m such that 1<m<7 and m divides 8^m-1. %t A092028 a[n_] := (For[k=2, Mod[n^k-1, k]>0, k++ ];k);Table[a[n], {n, 3, 75}] %o A092028 (PARI) a(n)=if(n%2, return(2)); my(m=3); while(Mod(n,m)^m!=1, m+=2); m \\ _Charles R Greathouse IV_, May 29 2014 %Y A092028 Cf. A020639, A092067. %K A092028 nonn %O A092028 3,1 %A A092028 _Farideh Firoozbakht_, Mar 26 2004