cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A091552 Second column (k=3) sequence of array A092077 ((8,2)-Stirling2) divided by 16.

Original entry on oeis.org

1, 308, 154840, 121284800, 138146444800, 216595133081600, 448169865375232000, 1184352885735219200000, 3894384547720687820800000, 15599967808704696966348800000, 74806554280938737689393561600000, 423166219648146647212581257216000000, 2788777788711380327670376970321920000000
Offset: 2

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Crossrefs

Cf. A091551 (second column of (7, 2)-Stirling2 array).

Programs

  • Mathematica
    a[n_] := 2^(2*n-5) * 3^(2*n-1) * Pochhammer[1/3, n] * (-3 * Pochhammer[1/6, n] + Pochhammer[1/2, n]); Array[a, 20, 2] (* Amiram Eldar, Aug 30 2025 *)

Formula

E.g.f.: (hypergeom([1/3, 1/2], [], 36*x) - 3*hypergeom([1/6, 1/3], [], 36*x) + 2)/(3!*16).
a(n) = (2^n) * Product_{j=0..n-1} (3*j+1) * (-3*Product_{j=0..n-1} (6*j+1) + Product_{j=0..n-1} (6*j+3))/(3!*16), n>=2. From eq.12 of the Blasiak et al. reference with r=8, s=2, k=3.
a(n) = (2^(2*n-5)) * (3^(2*n-1)) * risefac(1/3, n) * (-3*risefac(1/6, n) + risefac(1/2, n)), n>=2, with risefac(x, n) = Pochhammer(x, n).
a(n) ~ sqrt(Pi) * 2^(2*n-4) * 3^(2*n-1) * n^(2*n-1/6) / (Gamma(1/3) * exp(2*n)). - Amiram Eldar, Aug 30 2025

A091546 First column of the array A092077 ((8,2)-Stirling2).

Original entry on oeis.org

1, 56, 10192, 3872960, 2517424000, 2497284608000, 3511182158848000, 6643156644540416000, 16275733779124019200000, 50129260039701979136000000, 189588861470152885092352000000, 863766852858016544480755712000000, 4666068539139005373285042356224000000, 29489553167358513959161467691335680000000
Offset: 1

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

Also seventh column (m=6) of triangle A091543.

Crossrefs

Programs

  • Mathematica
    a[n_] := 6^(2*n) * Pochhammer[1/6, n] * Pochhammer[1/3, n] / 2; Array[a, 20] (* Amiram Eldar, Aug 30 2025 *)

Formula

a(n) = (2^(n-1))*Product_{j=0..n-1} ((3*j+1)*(6*j+1)), n>=1. From eq.12 of the Blasiak et al. reference with r=8, s=2, k=1.
a(n) = (6^(2*n))*risefac(1/6, n)*risefac(1/3, n)/2, n>=1, with risefac(x, n) = Pochhammer(x, n).
a(n) = fac6(6*n-5)*fac6(6*n-4)/2, n>=1, with fac6(6*n-5) = A008542(n) and fac6(6*n-4)/2 = A034689(n)= (2^(n-1))*A007559(n), (6-factorials).
a(n) ~ Pi * (6/e)^(2*n) * n^(2*n-1/2) / (Gamma(1/6) * Gamma(1/3)). - Amiram Eldar, Aug 30 2025

A091758 Alternating row sums of array A092077 ((8,2)-Stirling2).

Original entry on oeis.org

1, 41, 5993, 1911281, 1070544561, 931648129241, 1164230224629081, 1977455909783346273, 4384042247054153832161, 12298460017360155919009801, 42594621493418383255115778761, 178534870708446720311905067877201, 890813416549297707507952795640859793
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The first negative member is the 680 digit number a(138)=-2266379480...2912329207.

Crossrefs

Cf. A091757 (row sums of A092077).

Formula

a(n)= sum( A092077(n, k)*(-1)^k, k=2..2*n), n>=1.

A091757 Generalized Bell numbers B_{8,2}.

Original entry on oeis.org

1, 73, 15945, 6993073, 5124715761, 5641397595321, 8700819552421753, 17898786381229403105, 47345052327747786859873, 156535091017683923932912041, 632460052562874236182866885161
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A091749 (B_{7, 2}).

Programs

  • Mathematica
    a[n_] := Sum[Product[FactorialPower[k+6*(j-1), 2], {j, 1, n}]/k!, {k, 2, Infinity}]/E; Array[a, 11] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n)=sum(A092077(n, k), k=2..2*n)= sum((1/k!)*product(fallfac(k+6*(j-1), 2), j=1..n), k=2..infinity)/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=8, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.
Showing 1-4 of 4 results.