A092083 A convolution triangle of numbers obtained from A034789.
1, 21, 1, 546, 42, 1, 15561, 1533, 63, 1, 466830, 54054, 2961, 84, 1, 14471730, 1885338, 124740, 4830, 105, 1, 458960580, 65542932, 4977882, 236880, 7140, 126, 1, 14801478705, 2277656901, 192582117, 10661301, 399735, 9891, 147, 1
Offset: 1
Examples
{1}; {21,1}; {546,42,1}; {15561,1533,63,1}; ...
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- W. Lang, First 10 rows.
Formula
a(n, m) = 6*(6*(n-1)+m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
A132058 Row sums of triangle A132057 (s2(8)).
1, 29, 1037, 40559, 1667583, 70782699, 3071608779, 135473190854, 6049729693582, 272822775416318, 12401578633961126, 567447248339504450, 26107796156861857866, 1206858263561650517658, 56014709781906608746434
Offset: 1
Formula
a(n)=sum(A132057(n, m), m=1..n), n>=1.
G.f.: (-1 + (1-49*x)^(-1/7))/(8-(1-49*x)^(-1/7)).
Comments