A092083 A convolution triangle of numbers obtained from A034789.
1, 21, 1, 546, 42, 1, 15561, 1533, 63, 1, 466830, 54054, 2961, 84, 1, 14471730, 1885338, 124740, 4830, 105, 1, 458960580, 65542932, 4977882, 236880, 7140, 126, 1, 14801478705, 2277656901, 192582117, 10661301, 399735, 9891, 147, 1
Offset: 1
Examples
{1}; {21,1}; {546,42,1}; {15561,1533,63,1}; ...
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- W. Lang, First 10 rows.
Formula
a(n, m) = 6*(6*(n-1)+m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
A132059 Alternating row sums of triangle A132057 (s2(8)).
1, 27, 925, 35069, 1406679, 58491537, 2493656187, 108280678092, 4768395658314, 212335592489544, 9540877059969102, 431908789303835976, 19675192863275361294, 901089855844979674068, 41459199062515242868098
Offset: 1
Formula
a(n)= -sum(A132057(n, m)*(-1)^m, m=1..n), n>=1.
G.f.: (-1 +(1-49*x)^(-1/7))/(6+(1-49*x)^(-1/7)).
Comments