cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092090 Boustrophedon transform of Fibonacci numbers 1, 2, 3, 5, 8, ...

This page as a plain text file.
%I A092090 #16 Jun 12 2022 10:19:31
%S A092090 1,3,8,22,67,229,897,4023,20512,117516,748031,5237959,40014097,
%T A092090 331156423,2951484420,28184585550,287085799927,3106996356945,
%U A092090 35603555478689,430652619722011,5483239453957132,73305511708044652,1026690239891085363,15033060056592047307
%N A092090 Boustrophedon transform of Fibonacci numbers 1, 2, 3, 5, 8, ...
%H A092090 C. A. Church and M. Bicknell, <a href="https://www.mathstat.dal.ca/FQ/Scanned/11-3/church.pdf">Exponential generating functions for Fibonacci identities</a>, Fibonacci Quarterly, 11(3) (1973), 275-281.
%H A092090 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>).
%H A092090 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%F A092090 E.g.f.: (sec(x) + tan(x))*(a^2*exp(a*x) - b^2*exp(b*x))/(a - b), where a = (1 + sqrt(5))/2 and b = (1 - sqrt(5))/2. - _Petros Hadjicostas_, Feb 16 2021
%p A092090 read transforms; with(combinat, fibonacci): a := [seq(fibonacci(i),i=2..30)]: BOUS2(a);
%o A092090 (Python)
%o A092090 from itertools import accumulate, islice
%o A092090 def A092090_gen(): # generator of terms
%o A092090     blist, a, b = tuple(), 1, 2
%o A092090     while True:
%o A092090         yield (blist := tuple(accumulate(reversed(blist),initial=a)))[-1]
%o A092090         a, b = b, a+b
%o A092090 A092090_list = list(islice(A092090_gen(),40)) # _Chai Wah Wu_, Jun 12 2022
%Y A092090 Cf. A000744 (which uses BOUS2), A062122 (which uses Fibonacci numbers with an error in them), A092073.
%K A092090 nonn
%O A092090 0,2
%A A092090 _N. J. A. Sloane_, Apr 01 2004