A092092 Back and Forth Summant S(n, 3): a(n) = Sum{i=0..floor(2n/3)} (n-3i).
1, 1, 0, 3, 2, 0, 5, 3, 0, 7, 4, 0, 9, 5, 0, 11, 6, 0, 13, 7, 0, 15, 8, 0, 17, 9, 0, 19, 10, 0, 21, 11, 0, 23, 12, 0, 25, 13, 0, 27, 14, 0, 29, 15, 0, 31, 16, 0, 33, 17, 0, 35, 18, 0, 37, 19, 0, 39, 20, 0, 41, 21, 0, 43, 22, 0, 45, 23, 0, 47, 24, 0, 49, 25, 0, 51, 26, 0, 53, 27, 0, 55, 28
Offset: 1
References
- F. Smarandache, Back and Forth Summants, Arizona State Univ., Special Collections, 1972.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- J. Dezert, editor, Smarandacheials, Mathematics Magazine, Aurora, Canada
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
Crossrefs
Programs
-
Maple
f:= proc(n) local t; t:= n mod 3; if t = 0 then 0 elif t = 1 then 2/3*(n+1/2) else (n+1)/3 fi end proc: map(f, [$1..100]); # Robert Israel, May 19 2016
-
Mathematica
LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 1, 0, 3, 2, 0}, 100] (* Jean-François Alcover, Jun 04 2020 *)
-
PARI
S(n, k=3) = local(s, x); s = n; x = n - k; while (x >= -n, s = s + x; x = x - k); s;
Formula
a(3n) = 0; a(3n+1) = 2n+1; a(3n+2) = n+1.
G.f.: x*(1+x+x^3) / ( (x-1)^2*(1+x+x^2)^2 ). - R. J. Mathar, Jun 26 2013
a(n) = Sum_{k=1..n} k*( floor((3k-1)/n)-floor((3k-2)/n) ). - Anthony Browne, May 17 2016
Extensions
Edited and extended by David Wasserman, Dec 19 2005
Comments