cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092095 a(n) = Sum_{i=0,1,2,...; n-k*i >= -n} |n-k*i| for k=4.

This page as a plain text file.
%I A092095 #15 Apr 09 2025 18:53:51
%S A092095 9,16,16,24,25,36,36,48,49,64,64,80,81,100,100,120,121,144,144,168,
%T A092095 169,196,196,224,225,256,256,288,289,324,324,360,361,400,400,440,441,
%U A092095 484,484,528,529,576,576,624,625,676,676,728,729,784,784,840,841,900,900
%N A092095 a(n) = Sum_{i=0,1,2,...; n-k*i >= -n} |n-k*i| for k=4.
%D A092095 F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.
%D A092095 F. Smarandache, Back and Forth Summants, Arizona State Univ., Special Collections, 1972.
%H A092095 J. Dezert, ed., <a href="http://www.mathematicsmagazine.com/corresp/J_Dezert/JDezert.htm">Smarandacheials (1)</a>, Mathematics Magazine for Grades 1-12, No. 4, 2004.
%H A092095 J. Dezert, ed., <a href="http://www.mathematicsmagazine.com/corresp/J_Dezert/JDezert2.htm">Smarandacheials (2)</a>, Mathematics Magazine for Grades 1-12, No. 4, 2004.
%H A092095 F. Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/Summants.htm">Summants</a> [Broken link]
%H A092095 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,1,-1,-1,1).
%F A092095 G.f.: x^5*(8*x^6-4*x^5-8*x^4+x^3-9*x^2+7*x+9)/((x^2+1)*(x+1)^2*(1-x)^3). - _Alois P. Heinz_, Apr 09 2025
%p A092095 S := proc(n,k) local a,i ; a :=0 ; i := 0 ; while n-k*i >= -n do a := a+abs(n-k*i) ; i := i+1 ; od: RETURN(a) ; end: k := 4: seq(S(n,k),n=k+1..80) ; # _R. J. Mathar_, Feb 01 2008 (Adapted from program for A092096 by _N. J. A. Sloane_, Jul 03 2017)
%o A092095 (PARI) a(n) = ((2*n+1)*(-1)^n - 2*(-I)^n - 2*I^n + 2*n*(n+3) + 3)/8; \\ _Jinyuan Wang_, Apr 09 2025
%Y A092095 Cf. A001044, A092396, A092397, A092398, A092399, A092971, A092972, A092973, A092974.
%K A092095 nonn,easy
%O A092095 5,1
%A A092095 Jahan Tuten (jahant(AT)indiainfo.com), Mar 29 2004
%E A092095 Edited with better definition by _Omar E. Pol_, Dec 28 2008
%E A092095 Entry revised by _N. J. A. Sloane_, Jul 03 2017
%E A092095 Offset changed to 5 and more terms from _Jinyuan Wang_, Apr 09 2025