cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092096 a(n) = Sum_{i=0,1,2,..; n-k*i >= -n} |n-k*i| for k=5.

Original entry on oeis.org

11, 12, 20, 20, 30, 31, 32, 45, 45, 60, 61, 62, 80, 80, 100, 101, 102, 125, 125, 150, 151, 152, 180, 180, 210, 211, 212, 245, 245, 280, 281, 282, 320, 320, 360, 361, 362, 405, 405, 450, 451, 452, 500, 500, 550, 551, 552, 605, 605, 660, 661, 662, 720, 720, 780
Offset: 6

Views

Author

Jahan Tuten (jahant(AT)indiainfo.com), Mar 29 2004

Keywords

References

  • F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.
  • F. Smarandache, Back and Forth Summants, Arizona State Univ., Special Collections, 1972.

Crossrefs

Programs

  • Maple
    S := proc(n,k) local a,i ; a :=0 ; i := 0 ; while n-k*i >= -n do a := a+abs(n-k*i) ; i := i+1 ; od: RETURN(a) ; end: k := 5: seq(S(n,k),n=k+1..80) ; # R. J. Mathar, Feb 01 2008
  • Mathematica
    a[n_] := Sum[Abs[n-5i], {i, 0, Quotient[2n, 5]}];
    Table[a[n], {n, 6, 60}] (* Jean-François Alcover, Apr 29 2023 *)

Formula

Empirical g.f.: -x^6*(10*x^10-5*x^9-3*x^7-x^6-21*x^5+10*x^4+8*x^2+x+11) / ((x-1)^3*(x^4+x^3+x^2+x+1)^2). - Colin Barker, Jul 28 2013

Extensions

Edited and extended by R. J. Mathar, Feb 01 2008
Revised by N. J. A. Sloane, Jul 03 2017