A092111 a(n) = n+1 minus the greatest number of 1's in the binary representations of primes between 2^n and 2^(n+1).
0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
Programs
-
Maple
f:= proc(n) local t,j,k; t:= 2^(n+1)-1; if isprime(t) then return 0 fi; for j from 1 to n-1 do if isprime(t-2^j) then return 1 fi od; for j from 1 to n-2 do for k from j+1 to n-1 do if isprime(t-2^j-2^k) then return 2 fi od od; FAIL end proc: map(f, [$1..200]); # Robert Israel, Mar 05 2020
-
Mathematica
Compute the second line of the Mathematica code for A091938, then (Table[n + 1, {n, 105}]) - (Count[ IntegerDigits[ #, 2], 1] & /@ Table[ f[n], {n, 105}])
Formula
a(n) = n+1 - A091937(n).
Comments