cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092111 a(n) = n+1 minus the greatest number of 1's in the binary representations of primes between 2^n and 2^(n+1).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Robert G. Wilson v, Feb 20 2004

Keywords

Comments

0's occur only at Mersenne prime exponents (A000043) - 1, twos are in A092112, threes do not appear < 504.
a(n) <= 2 for n <= 2000. - Robert Israel, Mar 05 2020

Crossrefs

Programs

  • Maple
    f:= proc(n) local t,j,k;
      t:= 2^(n+1)-1;
      if isprime(t) then return 0 fi;
      for j from 1 to n-1 do if isprime(t-2^j) then return 1 fi od;
      for j from 1 to n-2 do for k from j+1 to n-1 do
        if isprime(t-2^j-2^k) then return 2 fi od od;
      FAIL
    end proc:
    map(f, [$1..200]); # Robert Israel, Mar 05 2020
  • Mathematica
    Compute the second line of the Mathematica code for A091938, then (Table[n + 1, {n, 105}]) - (Count[ IntegerDigits[ #, 2], 1] & /@ Table[ f[n], {n, 105}])

Formula

a(n) = n+1 - A091937(n).