This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092118 #28 Mar 07 2024 02:23:00 %S A092118 1322314049613223140496,2066115702520661157025,2975206611629752066116, %T A092118 4049586776940495867769,5289256198452892561984,6694214876166942148761, %U A092118 8264462810082644628100,183673469387755102041183673469387755102041 %N A092118 Biperiod squares: square numbers whose digits repeat twice in order. %D A092118 Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439. %D A092118 R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312. %H A092118 Author?, <a href="http://www.math2.org/mmb/thread/31820">MMB message board "big square"</a> %H A092118 Dr Barker, <a href="https://www.youtube.com/watch?v=c1peEN5Q-0c">Can Numbers Like These Be Square?</a>, YouTube video, 2023. %H A092118 Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, <a href="https://arxiv.org/abs/1707.03894">The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations</a>, preprint arXiv:1707.03894 [math.NT], July 14 2017. %p A092118 f:=proc(n) local i,j,k; i:=cat(n,n); j:=convert(i,decimal,10); issqr(j); end; %p A092118 with(numtheory): Digits:=50:for d from 1 to 22 do tendp1:=10^d+1: tendp1fact:=ifactors(tendp1)[2]: n:=mul(piecewise(tendp1fact[i][2] mod 2=1,tendp1fact[i][1],1),i=1..nops(tendp1fact)):for i from ceil(sqrt((10^(d-1))/n)) to floor(sqrt((10^d-1)/n)) do printf("%d, ",tendp1*n*i^2) od: od: # C. Ronaldo %o A092118 (Python) %o A092118 from itertools import count, islice %o A092118 from sympy import sqrt_mod %o A092118 def A092118_gen(): # generator of terms %o A092118 for j in count(0): %o A092118 b = 10**j %o A092118 a = b*10+1 %o A092118 ab, aa = a*b, a*(a-1) %o A092118 for k in sorted(sqrt_mod(0,a,all_roots=True)): %o A092118 if ab <= (m:=k**2) < aa: %o A092118 yield m %o A092118 A092118_list = list(islice(A092118_gen(),10)) # _Chai Wah Wu_, Mar 06 2024 %Y A092118 Cf. A102567, A106497. %K A092118 base,nonn %O A092118 1,1 %A A092118 Michael Mark, Dec 15 2004 %E A092118 Corrected and extended by C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 15 2005 %E A092118 Definition corrected and improved, reference and cross-reference added by _William Rex Marshall_, Nov 12 2010 %E A092118 Keyword base added by _William Rex Marshall_, Nov 12 2010