A092122 Let R_{k}(m) = the digit reversal of m in base k (R_{k}(m) is written in base 10). Sequence gives numbers m such that m = Sum_{d|m, d>1} R_{d}(m).
6, 154, 310, 370, 2829, 3526, 15320, 20462, 1164789, 4336106, 5782196, 145582972
Offset: 1
Examples
m = 154 is a term: Sum_{d|154, d>1} R_{d}(154) = 89 + 10 + 34 + 11 + 7 + 2 + 1 = 154.
Programs
-
Python
from sympy import divisors from sympy.ntheory import digits def fd(d, b): return sum(di*b**i for i, di in enumerate(d[::-1])) def R(k, n): return fd(digits(n, k)[1:][::-1], k) def ok(n): s = 0 for d in divisors(n, generator=True): if d == 1: continue s += R(d, n) if s > n: return False return n == s print([k for k in range(1, 21000) if ok(k)]) # Michael S. Branicky, Nov 14 2022
Extensions
a(9)-a(12) from Michael S. Branicky, Nov 14 2022