cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092122 Let R_{k}(m) = the digit reversal of m in base k (R_{k}(m) is written in base 10). Sequence gives numbers m such that m = Sum_{d|m, d>1} R_{d}(m).

Original entry on oeis.org

6, 154, 310, 370, 2829, 3526, 15320, 20462, 1164789, 4336106, 5782196, 145582972
Offset: 1

Views

Author

Naohiro Nomoto, Mar 30 2004

Keywords

Examples

			m = 154 is a term: Sum_{d|154, d>1} R_{d}(154) = 89 + 10 + 34 + 11 + 7 + 2 + 1 = 154.
		

Crossrefs

Programs

  • Python
    from sympy import divisors
    from sympy.ntheory import digits
    def fd(d, b): return sum(di*b**i for i, di in enumerate(d[::-1]))
    def R(k, n): return fd(digits(n, k)[1:][::-1], k)
    def ok(n):
        s = 0
        for d in divisors(n, generator=True):
            if d == 1: continue
            s += R(d, n)
            if s > n: return False
        return n == s
    print([k for k in range(1, 21000) if ok(k)]) # Michael S. Branicky, Nov 14 2022

Extensions

a(9)-a(12) from Michael S. Branicky, Nov 14 2022