A092147 Number of even-length palindromes among the k-tuples of partial quotients of the continued fraction expansions of n/r, r=1,...,n.
0, 1, 0, 1, 2, 1, 0, 1, 0, 5, 0, 1, 2, 1, 2, 1, 2, 1, 0, 5, 0, 1, 0, 1, 4, 5, 0, 1, 2, 5, 0, 1, 0, 5, 2, 1, 2, 1, 2, 5, 2, 1, 0, 1, 2, 1, 0, 1, 0, 9, 2, 5, 2, 1, 2, 1, 0, 5, 0, 5, 2, 1, 0, 1, 8, 1, 0, 5, 0, 5, 0, 1, 2, 5, 4, 1, 0, 5, 0, 5, 0, 5, 0, 1, 8, 1, 2, 1, 2, 5, 2, 1, 0, 1, 2, 1, 2, 1, 0, 9, 2, 5, 0, 5, 2
Offset: 1
Keywords
Crossrefs
Cf. A092089.
Formula
Conjecture. Let n=(2^r)(p^s) where p is an odd prime and s>0. Then if p=4k+1, we have a(n)=2s if r=0, a(n)=4s+1 if r>0. On the other hand, if p=4k+3, we get a(n)=0 if r=0, a(n)=1 if r>0. Finally, if n=2^r we get a(n)=1.
Comments