cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092147 Number of even-length palindromes among the k-tuples of partial quotients of the continued fraction expansions of n/r, r=1,...,n.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 1, 0, 5, 0, 1, 2, 1, 2, 1, 2, 1, 0, 5, 0, 1, 0, 1, 4, 5, 0, 1, 2, 5, 0, 1, 0, 5, 2, 1, 2, 1, 2, 5, 2, 1, 0, 1, 2, 1, 0, 1, 0, 9, 2, 5, 2, 1, 2, 1, 0, 5, 0, 5, 2, 1, 0, 1, 8, 1, 0, 5, 0, 5, 0, 1, 2, 5, 4, 1, 0, 5, 0, 5, 0, 5, 0, 1, 8, 1, 2, 1, 2, 5, 2, 1, 0, 1, 2, 1, 2, 1, 0, 9, 2, 5, 0, 5, 2
Offset: 1

Views

Author

John W. Layman, Mar 31 2004

Keywords

Comments

Suggested by R. K. Guy, Mar 26 2004.
Theorem. Let n=2^a*p1^a1*p2^a2*...*pk^ak*q, where the pi are distinct primes of the form 4m+1 and q contains only primes of the form 4m+3. Then a(n) is given by (1) 0, if a=0 and k=0, (2) 1, if a>0 and k=0, (3) Sum[2^t*s_t(a1,a2,...,ak), if a=0 and k>0 and (4) 1+Sum[2^(t+1)*s_t(a1,a2,...,ak), if a>0 and k>0, where the s_i are the symmetric polynomials s1(a1,a2a,...,ak)=a1+a2+...+ak, s2(a1,a2,...ak)=a1a2+a1a3+...+a2a3+a2a4+...+...+a(k-1)ak, etc. - James E. Shockley (shockley(AT)math.vt.edu), Jul 13 2004

Crossrefs

Cf. A092089.

Formula

Conjecture. Let n=(2^r)(p^s) where p is an odd prime and s>0. Then if p=4k+1, we have a(n)=2s if r=0, a(n)=4s+1 if r>0. On the other hand, if p=4k+3, we get a(n)=0 if r=0, a(n)=1 if r>0. Finally, if n=2^r we get a(n)=1.