cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092170 Sum of squares of alternating factorials : n!^2 - (n-1)!^2 + (n-2)!^2 - ... 1!^2.

This page as a plain text file.
%I A092170 #9 Aug 21 2016 12:57:58
%S A092170 1,3,33,543,13857,504543,24897057,1600805343,130081089057,
%T A092170 13038108350943,1580312813889057,227862219988670943,
%U A092170 38547925823643969057,7561506530728353470943,1702450746193471070529057
%N A092170 Sum of squares of alternating factorials : n!^2 - (n-1)!^2 + (n-2)!^2 - ... 1!^2.
%C A092170 The height of a regular simplex (hypertetrahedron) of dimension n and with unit length edges will be h(n)=sqrt(a(n))/n!. The contents (hypervolume) will then be V(n)=V(n-1)*h(n)/n where V(1)=1.
%H A092170 Harvey P. Dale, <a href="/A092170/b092170.txt">Table of n, a(n) for n = 1..253</a>
%F A092170 a(n) = n!^2 - a(n-1), a(1)=1. - _Charles R Greathouse IV_, Oct 13 2004
%e A092170 a(3)=3!^2-a(2)=36-a(2);
%e A092170 a(2)=2!^2-a(1)=4-a(1)=3-1=3 ->
%e A092170 a(3)=36-3=33.
%t A092170 a[n_] := Sum[(-1)^j*((n - j)!)^2, {j, 0, n - 1}]
%t A092170 Module[{nn=20,fctrls}, fctrls=(Range[nn]!)^2;Table[Total[Times@@@ Partition[ Riffle[Reverse[Take[fctrls,n]],{1,-1},{2,-1,2}],2]], {n, nn}]] (* _Harvey P. Dale_, Aug 21 2016 *)
%Y A092170 Cf. A005165, A055546.
%K A092170 easy,nonn
%O A092170 1,2
%A A092170 Christer Mauritz Blomqvist (MauritzTortoise(AT)hotmail.com), Apr 01 2004