A092175 Define d(n,k) to be the number of '1' digits required to write out all the integers from 1 through k in base n. E.g., d(10,9) = 1 (just '1'), d(10,10) = 2 ('1' and '10'), d(10,11) = 4 ('1', '10' and '11'). Then a(n) is the first k >= 1 such that d(n,k) > k.
2, 3, 13, 29, 182, 427, 3931, 8185, 102781, 199991, 3179143, 5971957, 114818731, 210826995, 4754446861, 8589934577, 222195898594, 396718580719, 11575488191148, 20479999999981, 665306762187614, 1168636602822635, 41826814261329723, 73040694872113129
Offset: 1
Examples
John Fletcher gives the following treatment of the case of odd B at the 'solutions' link: a(10)=199991 because you can label 199990 tapes using 199990 sets of base-10 sticky digit labels, but the 199991st tape can't be labeled with 199991 sets of sticky digit labels.
References
- Michael Brand was the originator of the problem.
Links
- Gregory Marton, Table of n, a(n) for n = 1..100
- IBM Corp., April 2004 "Ponder This" challenge.
- IBM Corp., April 2004 "Ponder This" solutions.
Crossrefs
Cf. A062971.
Formula
When n is even, a(n) = 2*n^(n/2) - n + 1.
Extensions
Edited by Robert G. Wilson v, based on comments from Don Coppersmith and John Fletcher, May 11 2004
a(13) corrected and a(23) onwards added by Gregory Marton, Jul 29 2023
Comments