A092198 Equal count of primes congruent to 1 mod 4 and 3 mod 4 associated with primes in A007351 (the zero beginning the sequence indicates the prime 2).
0, 1, 3, 6, 44, 1471, 1472, 1473, 1474, 1475, 1476, 25185, 25187, 25188, 25189, 25190, 25196, 25206, 25211, 25212, 25213, 25214, 25215, 25216, 25217, 25218, 25219, 25222, 25224, 25225, 25251, 25253, 25257, 25258, 25410, 25421, 25426, 25427
Offset: 1
Examples
a(3)=3 because at this point there are 3 primes congruent to 1 mod 4: 5, 13, 17 and 3 primes congruent to 3 mod 4: 3, 7, 11.
Crossrefs
Cf. A007351.
Programs
-
Mathematica
Block[{a = 0, b = -1}, Reap[Do[If[Mod[p, 4] == 1, a++, b++]; If[a == b, Sow@ a, 0], {p, Prime@ Range[51000]}]][[-1, -1]]] (* Michael De Vlieger, Mar 26 2018 *)
Formula
Compute the running totals of primes congruent to 1 mod 4 and primes congruent to 3 mod 4. When these totals are equal, include in the sequence.
Extensions
Typo in data corrected by Sean Reeves, Mar 24 2018